

- art work
- Non-volatile registers: durable storage of trusted values on-chip through crashes
- Logging: mechanism in place to ensure transaction
- of persistent data and metadata writes to memory

"Instant On" Secure Recovery of Non-Volatile Main Memory Systems

R. Iris Bahar

Brown University, iris_bahar@cs.brown.edu

Joseph Izraelevitz CU Boulder, joseph.izraelevitz@coloardo.edu

1. Motivation

Attack on Non-Volatile Memory

• an attacker could cause a power failure

the data remains in memory through power

the attacker can tamper with the memory **contents** which can cause application failure **State of the Art Solutions**

tree can be very large and...

reconstruction of the tree can take several hours

up to 2% normal execution overhead can be

2. Proposed Solution

First, recovery the Bonsai Merkle Subtree from the Root Stored On-Chip

• if verification succeeds, then reboot the system with verified memory • if verification fails, then the system is rendered unusable finer knowledge of where an attack might occur can potentially save uncorrupted memory

Lazy Verification of System Post-Boot

• takes advantage of hardware parallelism while the system is in use Iower wait time for system verification on power-on after power is endured during normal system execution

	_	E / Euturo Work
Memory Controller		• measuring how much data to
		- measuring now much uata to
 Internal Non-Volatile Registers Data 		take
 Counter Merkle Tree Node 	Pending	allocating tree contiguous m
Temp Merkle Tree Root (WF	eue PQ)	reconstruction
Permanent Done Root Bit		software libraries for dynamic
		verification memory resources

3. Hypothesis

University of Colorado Boulder

• We should see at least 8x speedup

the tree is 8-ary, so recovering an immediate child of the root would be 8x less work

• We will endure **negligible** overhead

• the solution is contained within the recovery scheme

• The system will be **functional** and its **integrity** will be verified seemingly instantly

o recover versus **how fast** data recovery can

nemory by process to avoid **incidental complete**

ic allocation of high priority integrity