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Background

Integrity-Checking Algorithm
1. If the state of memory is

Threat Model

» Everything off-chip is untrusted ahead of the Merkle Tree
» The memory bus may be state, use prior work to match
snooped the states
. Memory packets may be 2. Reconstruct the Merkle Tree
replayed 3. Compare the “computed root”
with the root stored on-chip
: Memory contents may o 1. If the roots are the same, then

scanned restore the system

. 2. Otherwise, the system is
Memory Cor_ltents may be unrecoverable. Panic.
tampered with



The Problem

* Non-volatile memories are an increasingly likely candidate to
replace DRAM as main memory of commodity systems

» By retaining memory state after power-off, NVMMs are subject
to a wider array of attacks than traditional DRAMs

« Counter-mode encryption can secure main memory and allow
for integrity checking mechanisms, but integrity checks are
slow — antithetical to fast power-on



Our Goals

 Partial and lazy recovery of counter-mode encryption-based
iIntegrity checking procedures

 Ability to backup non-corrupted memory
» Fast recovery of important code
* Fail-fast of corrupted code
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K. Abu Zubair and A. Awad, “Anubis:
Low-overhead and practical recov- ery
time for secure non-volatile memories,”
in International Symposium on Computer
Architecture (ISCA), 2019.
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Methodology

* We are going to extend the memory controller device class in
gemo

 We want to ensure that the runtime doesn’t suffer too much
overhead

* We will measure recovery time after crash with a variety of
Implementations



Questions Raised

* Tradeoff between recoverable
memory versus time to
recover

* On-chip transaction for non-
volatile tree node cache

 How to ensure that importar’
software is always in the on
chip “node domain”

Root



Thank you for your time!



