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Background
Threat Model

• Everything off-chip is untrusted
• The memory bus may be 

snooped
• Memory packets may be 

replayed
• Memory contents may be 

scanned
• Memory contents may be 

tampered with

Integrity-Checking Algorithm
1. If the state of memory is 

ahead of the Merkle Tree 
state, use prior work to match 
the states

2. Reconstruct the Merkle Tree
3. Compare the “computed root” 

with the root stored on-chip
1. If the roots are the same, then 

restore the system
2. Otherwise, the system is 

unrecoverable. Panic.



The Problem
• Non-volatile memories are an increasingly likely candidate to 

replace DRAM as main memory of commodity systems
• By retaining memory state after power-off, NVMMs are subject 

to a wider array of attacks than traditional DRAMs
• Counter-mode encryption can secure main memory and allow 

for integrity checking mechanisms, but integrity checks are 
slow – antithetical to fast power-on



Our Goals
• Partial and lazy recovery of counter-mode encryption-based 

integrity checking procedures
• Ability to backup non-corrupted memory
• Fast recovery of important code
• Fail-fast of corrupted code
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K. Abu Zubair and A. Awad, “Anubis: 
Low-overhead and practical recov- ery
time for secure non-volatile memories,” 
in International Symposium on Computer 
Architecture (ISCA), 2019. 
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Methodology
• We are going to extend the memory controller device class in 

gem5
• We want to ensure that the runtime doesn’t suffer too much 

overhead
• We will measure recovery time after crash with a variety of 

implementations



Questions Raised
• Tradeoff between recoverable 

memory versus time to 
recover
• On-chip transaction for non-

volatile tree node cache
• How to ensure that important 

software is always in the on-
chip “node domain”

Root



Thank you for your time!


