Partial Recovery of Secure
Non-Volatile Main Memories

Samuel Thomas, Tamara Lehman, R. Iris Bahar, Joseph lzraelevitz



Background

Plaintext Data

Page Page : : MAC or
ID Offset A" Minor Padding
AES
Hardware Encryption

Encryption Key

Encrypted Data (for NVMM)



Background

Bonsai Merkle Tree

Page Page : : MAC or
ID Offset A" viinor Padding

Metadata Block Metadata Block Metadata Block



Background

Integrity-Checking Algorithm
1. If the state of memory is

Threat Model

» Everything off-chip is untrusted ahead of the Merkle Tree
» The memory bus may be state, use prior work to match
snooped the states
. Memory packets may be 2. Reconstruct the Merkle Tree
replayed 3. Compare the “computed root”
with the root stored on-chip
: Memory contents may o 1. If the roots are the same, then

scanned restore the system

. 2. Otherwise, the system is
Memory Cor_ltents may be unrecoverable. Panic.
tampered with



The Problem

* Non-volatile memories are an increasingly likely candidate to
replace DRAM as main memory of commodity systems

» By retaining memory state after power-off, NVMMs are subject
to a wider array of attacks than traditional DRAMs

« Counter-mode encryption can secure main memory and allow
for integrity checking mechanisms, but integrity checks are
slow — antithetical to fast power-on



Our Goals

 Partial and lazy recovery of counter-mode encryption-based
iIntegrity checking procedures

 Ability to backup non-corrupted memory
» Fast recovery of important code
* Fail-fast of corrupted code



Assumed Architecture

Memory Controller

Internal Persistent

Registers
 Data )
Volatile ~ * Counter PW”;‘?'
LLC =———m—) \\/rite « Merkle Tree Selnig NVMM
Queue Node Queue
 Temp Merkle (WPQ)
Tree Root

Permanent Done
Root Bit

K. Abu Zubair and A. Awad, “Anubis:
Low-overhead and practical recov- ery
time for secure non-volatile memories,”
in International Symposium on Computer
Architecture (ISCA), 2019.



Our Focus

Memory Controller

Internal Persistent

Registers
 Data )
Volatile ~ * Counter PW”;‘?'
LLC =———m—) \\/rite « Merkle Tree SAnelne NVMM
Queue Node Queue
 Temp Merkle (WPQ)
Tree Root

Permanent Done
Root Bit




Our Focus

Memory Controller

Internal Persistent

Registers
Data :
Volatile Counter PW”;‘?'
LLC =———m—) \\/rite Merkle Tree S[r}elljneg NVMM
Queue Node Wle)

Temp Merkle
Tree Root

Permanent Done
Root Bit




Memory Controller

Volatile
Write
Queue




Memory Controller

Volatile
Write
Queue




Memory Controller

Volatile
Write
Queue

-

N_

() O
9009000




Memory Controller

Volatile
Write
Queue

-

N_

() O
9009000




Memory Controller

Volatile
Write
Queue




Memory Controller

Volatile
Write
Queue




Methodology

* We are going to extend the memory controller device class in
gemo

 We want to ensure that the runtime doesn’t suffer too much
overhead

* We will measure recovery time after crash with a variety of
Implementations



Questions Raised

* Tradeoff between recoverable
memory versus time to
recover

* On-chip transaction for non-
volatile tree node cache

 How to ensure that importar’
software is always in the on
chip “node domain”

Root



Thank you for your time!



