
Partial Recovery of Secure 
Non-Volatile Main Memories

Samuel Thomas, Tamara Lehman, R. Iris Bahar, Joseph Izraelevitz



Background

MinorMajor
MAC or 
Padding

Hardware 
Encryption Key

Page 
Offset

Page 
ID

Plaintext Data

AES 
Encryption

Encrypted Data (for NVMM)



Background

MinorMajor
MAC or 
Padding

Page 
Offset

Page 
ID

…

Bonsai Merkle Tree

Metadata Block Metadata Block Metadata Block



Background
Threat Model

• Everything off-chip is untrusted
• The memory bus may be 

snooped
• Memory packets may be 

replayed
• Memory contents may be 

scanned
• Memory contents may be 

tampered with

Integrity-Checking Algorithm
1. If the state of memory is 

ahead of the Merkle Tree 
state, use prior work to match 
the states

2. Reconstruct the Merkle Tree
3. Compare the “computed root” 

with the root stored on-chip
1. If the roots are the same, then 

restore the system
2. Otherwise, the system is 

unrecoverable. Panic.



The Problem
• Non-volatile memories are an increasingly likely candidate to 

replace DRAM as main memory of commodity systems
• By retaining memory state after power-off, NVMMs are subject 

to a wider array of attacks than traditional DRAMs
• Counter-mode encryption can secure main memory and allow 

for integrity checking mechanisms, but integrity checks are 
slow – antithetical to fast power-on



Our Goals
• Partial and lazy recovery of counter-mode encryption-based 

integrity checking procedures
• Ability to backup non-corrupted memory
• Fast recovery of important code
• Fail-fast of corrupted code



Assumed Architecture

LLC
Volatile 
Write 

Queue

Internal Persistent 
Registers

• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

NVMM

K. Abu Zubair and A. Awad, “Anubis: 
Low-overhead and practical recov- ery
time for secure non-volatile memories,” 
in International Symposium on Computer 
Architecture (ISCA), 2019. 



Our Focus

LLC
Volatile 
Write 

Queue

Internal Persistent 
Registers

• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

NVMM



Our Focus

LLC
Volatile 
Write 

Queue

Internal Persistent 
Registers

• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

NVMM



Volatile 
Write 

Queue

Internal Persistent 
Registers

• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Volatile 
Write 

Queue

Internal 
Nonvolatile

Registers
• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Volatile 
Write 

Queue

Internal 
Nonvolatile

Registers
• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Volatile 
Write 

Queue

Internal 
Nonvolatile

Registers
• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Volatile 
Write 

Queue

Internal 
Nonvolatile

Registers
• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Volatile 
Write 

Queue

Internal 
Nonvolatile

Registers
• Data
• Counter
• Merkle Tree 

Node
• Temp Merkle 

Tree Root

Memory Controller

Permanent 
Root

Done 
Bit

Write-
Pending 
Queue 
(WPQ)

Root



Methodology
• We are going to extend the memory controller device class in 

gem5
• We want to ensure that the runtime doesn’t suffer too much 

overhead
• We will measure recovery time after crash with a variety of 

implementations



Questions Raised
• Tradeoff between recoverable 

memory versus time to 
recover
• On-chip transaction for non-

volatile tree node cache
• How to ensure that important 

software is always in the on-
chip “node domain”

Root



Thank you for your time!


