
A Midsummer Night’s Tree: Efficient and High
Performance Secure SCM

Samuel Thomas
Brown University

USA

Kidus Workneh
University of Colorado, Boulder

USA

Jac McCarty
Bryn Mawr College

USA

Joseph Izraelevitz
University of Colorado, Boulder

USA

Tamara Lehman
University of Colorado, Boulder

USA

R. Iris Bahar
Colorado School of Mines

Brown University
USA

Abstract
Secure memory is a highly desirable property to prevent
memory corruption-based attacks. The emergence of non-
volatile, storage class memory (SCM) devices presents new
challenges for secure memory. Metadata for integrity verifi-
cation, organized in a Bonsai Merkle Tree (BMT), is cached
on-chip in volatile caches, and may be lost on a power fail-
ure. As a consequence, care is required to ensure that meta-
data updates are always propagated into SCM. To optimize
metadata updates, state-of-the-art approaches propose lazy
update crash consistent metadata schemes. However, few
consider the implications of their optimizations on on-chip
area, which leads to inefficient utilization of scarce on-chip
space. In this paper, we propose A Midsummer Night’s Tree
(AMNT), a novel “tree within a tree” approach to provide
crash consistent integrity with low run-time overhead while
limiting on-chip area for security metadata. Our approach
offloads the potential hardware complexity of our technique
to software to keep area overheads low. Our proposed mech-
anism results in significant improvements (a 41% reduction
in execution overhead on average versus the state-of-the-art)
for in-memory storage applications while significantly re-
ducing the required on-chip area to implement our protocol.

ACM Reference Format:
Samuel Thomas, Kidus Workneh, Jac McCarty, Joseph Izraelevitz,
Tamara Lehman, and R. Iris Bahar. 2024. A Midsummer Night’s
Tree: Efficient and High Performance Secure SCM. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620666.3651354

This work is licensed under a Creative Commons Attribution International 
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651354

1 Introduction
Traditional systems with volatile memory technology suffer
from active and passive physical attacks where data in mem-
ory can be selectively targeted and corrupted [33, 45, 48, 55].
Protecting against these vulnerabilities must be done in hard-
ware, and has been thoroughly investigated over the past
two decades [20, 38, 78]. However, since volatile memory sys-
tems lose their state when power is disconnected, prior work
did not have to address the data remanence problem [69].
Storage class memory (SCM) systems use non-volatile tech-
nologies as main memory, so data will remain intact even
after power is disconnected. Such systems are natural can-
didates for large memory applications, where there is a lot
of data that may be queried and stored. Disk storage is not
viable for these cases due to its latency, and volatile memo-
ries are not viable due to the lack of persistent data storage.
Moreover, SCM systems face new physical attack risks due
to their application, providing attackers with extended op-
portunities for splicing, spoofing, and replay attacks. Thus,
SCM requires a solution for protecting data in memory, such
as secure memory guarantees and protections.
Standard approaches for providing secure memory for

volatile systems use counter-mode encryption to provide
data confidentiality and Bonsai Merkle Trees (BMTs) with
keyed hash message authentication codes (HMACs) to pro-
tect data integrity [47, 58, 71, 80]. The intuition behind these
approaches is that the chip’s size prevents attackers from
inspecting or injecting malicious content, establishing trust
for on-chip elements and mistrust for off-chip components.
Any data request that needs to leave the trusted boundary
goes through the integrity verification process (a traversal
of the BMT) and decryption. The root of the BMT is always
trusted as it is stored on-chip (within the trusted bound-
ary). Any authentication failure would deem that the data
has been corrupted, and could maliciously taint the exe-
cution in order to hijack control-flow [3, 14, 52], escalate
process privileges [18, 24], or any number of other mem-
ory corruption-based attacks [23, 46, 63, 64]. SCMs face an
additional challenge in that, when an integrity verification
fails, it cannot simply reboot the system. With SCM sys-
tems, rebooting is not an option, as SCM semantics imply

22

https://orcid.org/0000-0001-5394-9322
https://orcid.org/0009-0002-9190-594X
https://orcid.org/0009-0005-3231-4834
https://orcid.org/0009-0002-1267-5024
https://orcid.org/0000-0001-9779-1838
https://orcid.org/0000-0001-6927-8527
https://doi.org/10.1145/3620666.3651354
https://doi.org/10.1145/3620666.3651354
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651354&domain=pdf&date_stamp=2024-04-27


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

that the corrupted values will remain in memory through-
out the reboot, and can still maliciously impact a victim’s
execution. Furthermore, many cloud service providers rely
on instantaneous recovery to maintain quality of service
agreements [9, 16, 50].

Secure memory systems for volatile memory cannot sim-
ply be retrofitted to work with SCM systems as their lack
of crash consistency means that data cannot be validated
across unexpected reboots. An SCM system usually relies
on a persistence model to enforce the crash consistency of
particular data. The secure memory metadata must similarly
be persisted along with the data for recovery after power
loss. For example, if a block at time 𝑡 (𝑝𝑡 ) is persisted to mem-
ory, it needs to first be encrypted with a counter (𝐶𝑡 ) which
is stored in memory, then its hash (𝐻𝑡 ) needs to be com-
puted and also placed in memory, and finally the integrity
tree (𝑇𝑡 ) needs to be updated to reflect the new encryption
counter value. If the metadata (𝐶𝑡 , 𝐻𝑡 , 𝑇𝑡 ) is not persisted
at the same time as the data (𝑝𝑡 ) and a power outage were
to occur, then the persisted data (𝑝𝑡 ) would be in an incon-
sistent state with its corresponding metadata. This means
that the secure memory hardware would have no way to
distinguish a hash mismatch due to corruption or lack of
crash consistency as the metadata would incorrectly reflect
the persisted state (𝐶𝑡−1, 𝐻𝑡−1, 𝑇𝑡−1). Maintaining crash con-
sistent security metadata along with the associated data as
part of the persistence model is the essential challenge for
secure SCM.
To provide crash consistency, the secure memory proto-

col could instead persist all values that are written to the
metadata cache directly to memory. In doing so, the caching
policy can be referred to as a write-through cache, as op-
posed to its typical writeback nature. This scheme, termed
strict metadata persistence, is crash consistent because each
of 𝑝𝑡 ,𝐶𝑡 , 𝐻𝑡 , and 𝑇𝑡 are persisted directly and atomically, so
all values in memory are in a crash consistent state at all
times. However, this scheme is not realistic, as it can lead to
steep performance overheads (up to 25𝑋 ) at runtime.
An alternative approach, dubbed leaf metadata persis-

tence [82], addresses the performance issue by taking a lazy
approach to crash consistency. That is, only 𝑝𝑡 , 𝐻𝑡 , and𝐶𝑡 are
persisted directly at runtime. The tree nodes 𝑇𝑡 are written
to the volatile metadata cache and only written back to mem-
ory on eviction (i.e., they are not written-through directly).
After a crash, at system recovery, each of the inner nodes
of the integrity tree are recomputed from the hashes of its
leaves (i.e., the counters). If the computed tree root matches
the stored tree root, then the system can be safely rebooted.
However, this recovery procedure is pessimistic because all
inner nodes of the tree are assumed to be stale/untrusted,
and recovery will be worse as memory capacities continue
to grow beyond the scale of current SCM devices. These two
extreme baselines describe an inherent trade-off between

runtime performance overhead and recovery time. That is, per-
formance overhead is reduced as crash consistency models
become lazier, but at the cost of increasingly unreasonable
recovery times.

The current state-of-the-art navigates this trade-off space,
and can largely be categorized as being either a static [10,
65, 82] or dynamic [4–6, 19, 26, 42, 56, 76, 85] negotiation
of performance overhead due to crash consistency and re-
covery time. Static approaches work well to strictly reduce
the overhead due to maintaining the crash consistency of
secure memory metadata [82], reducing the work required at
recovery time [10], or partitioning hybrid untrusted device
semantics [65], but these approaches miss out on potential
performance benefits by treating all addresses the same. Dy-
namic approaches, on the other hand, explicitly track applica-
tion behavior to ensure that “hot regions” of memory benefit
from having shorter paths through the integrity tree to per-
sist values [26, 56], maintain an auxiliary “fast tree” in which
frequently accessed values can be directed to a more relaxed
crash consistency protocol [6, 76], or add auxiliary struc-
tures to further protect the metadata cache [4, 5, 19, 42, 85].
A limitation of these approaches, however, is that hot region
tracking in hardware is difficult, and is dependent on ap-
plication behaviors. Furthermore, these approaches tend to
come at the cost of hardware complexity, a third component
in this trade-off space that hasn’t been emphasized to the
same extent as performance or recovery.
We believe that considering the cost of hardware com-

plexity is important in terms of the performance scalability
and security of secure memory. If the space for these de-
vices occupies too much trusted space (i.e., on-chip), there
will be less space for other devices like the last level cache,
thereby causing more fetches to go to untrusted SCM and
further binding application performance to the performance
of secure memory.
In this paper, we propose A Midsummer Night’s Tree

(AMNT) 1, a “tree within a tree” metadata persistence pro-
tocol that provides integrity-protected SCM with a low run-
time overhead and a bounded recovery mechanism. AMNT’s
design goals are to achieve a crash recovery scheme with
low runtime overheads, bounded recovery times, and main-
taining limited area overheads both on-chip and in mem-
ory. AMNT achieves these goals by implementing a hybrid
metadata persistence protocol that is adaptive to workload
characteristics at runtime.
AMNT works from the insight that certain “hot” regions

of physical memory may be accessed with more regularity,
whereas an application may never access other regions. We
leverage this insight by implementing a hot-region track-
ing mechanism in which a small region in memory gets to

1In William Shakespeare’s play A Midsummer Night’s Dream, the Mechani-
cals perform a play called “The Most Lamentable Comedy and Most Cruel
Death of Pyramus and Thisbe,” which is known as a “play within a play.”

23



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

benefit from a lazy metadata persistence scheme. As a re-
sult, only a small and bounded amount of memory will be
stale/untrusted at the time of a crash, and the amount of
metadata to recover is similarly small. In addition, AMNT
gives a system administrator the ability to dictate the toler-
able recovery time after a crash by selecting, in BIOS, the
maximum stale data size (defined by the level at which the
subtree root is placed). In this paper, we demonstrate that
this insight holds true for several applications with varying
characteristics. For adversarial cases, we turn to software to
modify behavior at the application layer to better take advan-
tage of more tightly bounded physical regions of memory,
which minimizes AMNT’s physical area overhead.

We make the following contributions:

• We present AMNT, a dynamic hybrid metadata persistence
scheme for secure SCMs that performs hot region tracking
to adapt to in-memory behaviors at runtime.

• We introduce AMNT++, an optional hardware-software
co-design physical page allocator that acts as an addition
to AMNT in order to improve the likelihood of an in-use
page to be tracked in the hot region.

• We show how AMNT uses 96 bytes of volatile on-chip
space and 64 bytes of non-volatile on-chip space, which is
agnostic to memory and metadata cache size.

• We demonstrate how a system administrator can bound
the recovery time using our proposed approach to achieve
desired performance goals.

2 Background
Efficient techniques have been researched for designing tra-
ditional (volatile) secure main memory. However, new secu-
rity challenges arise with storage class memory, which also
affects runtime performance and recovery.

2.1 Traditional Secure Main Memory
A traditional secure memory system provides both confiden-
tiality and integrity verification for data in memory. In order
to provide confidentiality of data in memory, state-of-the-art
secure memory schemes rely on counter-mode encryption
(CME), which uses a counter and address as input to an AES
engine that produces a one-time pad. To encrypt plaintext
data, the one-time pad is XOR’ed with the data to produce
the ciphertext. To decrypt that data, the same one-time pad is
XOR’ed with the ciphertext to produce the plaintext. To bal-
ance cache efficiency and storage overhead, each 64B block
has a unique minor counter (7 bits), and each 4KB page has a
unique major counter (8 bytes). Together, the major and mi-
nor counters ensure that CME provides each block a spatially
and temporally unique encryption key while minimizing the
cost of a counter overflow.
Integrity protection is accomplished by computing and

storing a hash on a data write. To provide strong security

guarantees the hash used is a keyed hash message authen-
tication code (HMAC). When data is fetched from memory,
the hardware can confirm that it has not been corrupted by
comparing a newly computed HMAC against the previously
stored HMAC. In the event that the stored HMAC does not
match the newly computed one, the processor simply re-
boots to restart from a “safe” state. The HMAC alone cannot
provide full integrity protection due to its inability to detect
replay attacks. For example, an attacker may observe old
data and HMAC, and replace legitimate values with stale
values that still verify.

To provide protection from replay attacks, secure memory
systems use a Bonsai Merkle Tree (BMT) [58], which is a mod-
ified Merkle Tree (a tree of hashes) that protects the integrity
of the encryption counters [47, 58] (depicted in Figure 1).
The BMT consists of counter hashes (leaves) that are hashed
together to form the next-level node (parent). This process
is repeated recursively until a single node remains (i.e., the
root of the tree). To establish the root of trust, the root of
the tree must always be stored on-chip, as this is the trusted
boundary. The BMT is an efficient way of constructing and
storing an integrity tree as it reduces the tree’s memory re-
quirement [7, 8, 28]). Furthermore, the BMT root is small
and unique to the state of the entire underlying memory, so
it allows for trusted verification with very little on-chip area
overhead.

In order to verify an untrusted block of data coming from
memory against the BMT, the ancestral path of the data
through the tree (i.e., counter, tree nodes, root) must be
fetched, and the hashes must be recomputed and compared
against the stored values. If each computed hash matches the
stored hash up to the root (trusted value), then the integrity
of the data is authenticated. Similarly, updating a data value
requires updating the nodes in the ancestral path in the BMT
to reflect the state of the new data.
To reduce the integrity verification latency, most prior

work assumes that security metadata (integrity tree, encryp-
tion counters and data HMACs) is kept in on-chip caches [27,
40, 41, 44, 59–61, 66, 67, 70–72, 78–80]. Doing so introduces
a two-fold optimization. First, like data caches, recently ac-
cessedmetadata can be re-accessed with lower access latency.
Second, nodes cached on-chip are members of the trusted
compute base, so they too can act as roots of trust, reduc-
ing the integrity verification path. The implication of this
phenomenon is that the performance overhead of secure
memory protocols is largely tied to the efficacy of the secure
memory metadata cache in that it significantly reduces the
number of metadata fetches required to authenticate data
in memory. With the growing memory footprint of applica-
tions, the secure memory metadata cache hit rate decreases,
requiring more memory accesses and tightly binding appli-
cation performance to the secure memory system.

24



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

Bonsai Merkle Trees come in two forms: General BMTs
and SGX-style BMTs. General BMTs describe a BMT struc-
ture where nodes are the concatenated hashes of their chil-
dren (like that in Figure 1). SGX-style trees have counters
embedded in each node throughout the tree, concatenated
with a hash of its parent. In this form the hash is computed
using the Galois-counter hashing mode [28] with the counter
from the parent. This work assumes the General BMT format.
However, the proposed protocol can be used in an SGX-style
BMTwith small modifications to take advantage of protocols
that target this format, such as Anubis [85] and Osiris [82].

2.2 Secure SCM
Storage class memories (SCMs) describe a system based on
emerging technologies in whichmainmemory is non-volatile.
These devices are appealing in that they promise near-DRAM
latency with the persistence properties of long-term storage
devices. As a result, they are a natural candidate for data
storage applications where performance is bound by disk
accesses. These types of applications use main memory to en-
force persistent semantics. Unlike traditional DRAM-based
memories, data in SCM will persist through a crash (i.e., its
state is retained without power). Thus, SCM systems face the
challenge of ensuring the crash consistency of secure mem-
ory metadata. When values are updated in on-chip volatile
caches, their values become stale in main memory due to
its non-volatility. Barring additional action, in the event of
a crash, the up-to-date values in cache will be lost, leaving
behind stale values in non-volatile memory and rendering
the program unrecoverable on reboot forgoing the benefits
of SCMs.
Various software libraries (e.g. [17, 21, 34, 54, 75]) and

hardware extensions (e.g. [49, 84]) provide the programmer
sufficient control to avoid data inconsistency problems and
ensure application data is crash consistent after a power
failure. Like application data, security metadata (i.e., HMACs,
counters, and the BMT) must also be crash consistent to
ensure that data can be authenticated after a crash. Unlike
application data, securememorymetadata is not accessible to
the application, requiring the on-chip memory controller to
enforce its persistence. An implication of this phenomenon
is that the root of the BMT must always reflect the state
of data in main memory, and updates to the state and the
root must be atomic. Furthermore, the root of the BMT must
be stored in a non-volatile on-chip register in order to be
trusted through a crash.

2.3 Metadata Persistence Strategies
In general, strategies for ensuring metadata is usable after a
crash fall on two extremes. A strict metadata persistence strat-
egy ensures that all BMT values are consistent with the state
of the data in memory at all times — on a crash, all metadata
is guaranteed to be stored in a non-volatile device and can be
used for integrity verification. However, this method exhibits

Figure 1. Bonsai Merkle Tree (BMT). Inner tree nodes are
the concatenation of the child hashes.

high runtime overhead. On a data write, each node in the
ancestral path of the BMT must be updated in the on-chip
metadata cache and written-through to main memory. While
this technique is expensive at runtime, recovery is trivial, as
all metadata is immediately available on restart.
By contrast, a leaf metadata persistence strategy, while

improving runtime performance, significantly increases re-
covery time. In this strategy, only the BMT leaf (i.e., counter)
and root updates are done atomically with a data write. The
rest of the security metadata is updated lazily on a writeback
from the metadata cache. On system failure, all inner BMT
nodes must be assumed to be stale in SCM, and must be
recomputed. In order to recompute the BMT nodes, BMT
leaves must be fetched and their hashes computed. Inner-
BMT nodes are composed of the keyed hashes of their chil-
dren, which makes the computation of a node in the BMT
dependent on the fetch of each of its children. The data de-
pendent nature of BMTs limits the number of productive
parallel memory fetches to BMT sibling nodes, and implies
that a large number of bursts (proportional to memory size)
must be performed in order to recompute all of the inner
BMT nodes. As such, recomputation can last billions of cy-
cles and spans all of secure memory metadata, which, for
SCM, may run into the terabytes. Once recomputed, the BMT
hashes are compared to the root, which is stored securely
and persistently on-chip.
Prior art Osiris [82] further relaxes the leaf metadata

persistence protocol by introducing a “stop-loss” persistent
metadata cache for BMT leaves. The protocol persists leaves
after every 𝑛 data updates to ensure that they can never be
more stale than the stop-loss frequency. As a result of the
persistence relaxation, full BMT recovery in Osiris is slower
than in leaf metadata persistence. Prior art suggested stati-
cally partitioning the persistence policy of metadata based
on its tree level [10] or its location in volatile or non-volatile
memory [65]. However, to the best of our knowledge, there
is no work that proposes a dynamic persistence scheme.

Another state-of-the-art technique, Anubis [85], takes an
approach that tracks the addresses currently residing in the
metadata cache—only these addresses need to be recomputed
at recovery time. It tracks this information by “shadowing”

25



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

these addresses in a new structure in memory, called the
“shadow table.” This shadow table tracks updates to cached
metadata nodes in order to have a precise view of which
metadata are stale. Instead of performing whole tree recon-
struction, this protocol corrects only the stale values in mem-
ory at recovery time. However, the slow path of this ap-
proach occurs on every metadata cache miss, which means
its performance is directly tied to an application’s metadata
cache locality. This technique is also a movement away from
reducing the spatial overhead of secure memory [58, 60, 73].

Other prior work, leverage the insight that the length of a
persist path may be adjusted in accordance with the relative
hotness of some set of addresses. ProMT [6] and Bo-Tree [76]
propose using indirection towards a “fast tree” outside of
the global tree if addresses are deemed to be hot enough.
ASSURE [56] proposes a single Dynamic Modifiable Merkle
Tree that changes location based on the hotness of a subtree.
Along these lines, Bonsai Merkle Forest [26] reduces the
overhead of strict persistence by storing frequently accessed
subtree roots in a non-volatile on-chip cache. To determine
which nodes qualify, counters are added to the the volatile
metadata cache lines, and nodes in the persistent root set (i.e.,
non-volatile metadata cache) are either “pruned” or “merged”
depending on the counter state.

3 Threat Model
Our assumed threat model trusts on-chip values and con-
siders everything else untrusted [43, 71]. The off-chip com-
ponents (i.e. memory, disk, I/O) are vulnerable to passive
(snooping) and active (splicing and replay) physical attacks,
from both legitimate and illegitimate users. Our proposed
work is focused on protecting in-memory data in a system
that uses an SCM device. We assume the attacker has phys-
ical access to the system and can run any legal program
to exploit potential off-chip physical device vulnerabilities.
Similar to prior work [5, 25, 26, 82, 85], protection against
information leakage via side-channel attacks is out-of-scope
for our proposed defense mechanism.

4 A Midsummer Night’s Tree
The proposed solution, A Midsummer Night’s Tree (AMNT),
is a secure SCM protocol that balances a reasonable run-
time overhead with controllable recovery times and mini-
mal hardware overhead. AMNT achieves its goals by using
dynamic hybrid metadata persistence strategies within the
same BMT [58].

4.1 “A Tree Within a Tree”
Wework from the assumption that a small number of contigu-
ous addresses in physical memory are frequently accessed
(i.e., “hot”). Given this assumption, we propose AMNT, which
protects a small region of physical memory with a fast per-
sistence protocol while most addresses are persisted strictly

Figure 2. A Midsummer Night’s Tree. Red nodes implement
strict persistence. Blue nodes implement leaf persistence.

to keep the work required at recovery time low. AMNT is
a dynamic metadata persistence protocol that tracks hot re-
gions of physical memory within a subtree of the underlying
BMT in order to adapt to changing in-memory hotness at
runtime. The subtree implements a leaf persistence strat-
egy, where tree nodes are assumed to be stale at the time
of a system failure (blue nodes in Figure 2). The rest of the
BMT implements strict persistence to minimize recovery
time after a crash (red nodes in Figure 2). Given that a small
contiguous region of addresses are frequently accessed, we
make updating them fast. Implementing strict persistence
outside of the subtree, while slow at runtime, will not occur
often, minimizing the impact on overall performance and
reducing the work required at recovery time.
Implementing the AMNT protocol involves splitting the

BMT into the main tree with strict metadata persistence
(slow runtime, fast recovery) and a subtree with leaf meta-
data persistence (slow recovery, fast runtime). The subtree
root, situated at an internal BMT node, is placed in an on-chip
non-volatile register; its descendants are expected to contain
frequently-accessed data. The fast subtree register allows for
data authentications to quickly determine their persistence
protocol. Our approach makes data updates within the sub-
tree much faster—the associated tree node writes only need
to be updated in the metadata cache. In contrast, if a data
update occurs outside of the subtree, it will need to wait for
all BMT nodes on the ancestral path to be written-through
to persistent memory.

Given the metadata persistence strategy, all values outside
the subtree root in the BMT are not stale at the time of a crash.
To recover the BMT, AMNT only needs to recompute nodes
inside the subtree; recovery time depends on the subtree size
determined by the subtree root level. System administrators
can control recovery time by configuring the subtree root
level in the BIOS, and we offer insight into the trade-off
between recovery time and runtime overhead in Section 6.

4.2 Hot Region Tracking
The AMNT protocol assumes the subtree root resides at a
particular level of the BMT configured in the BIOS. Any
node can become the subtree root at this level depending

26



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

on application behavior in memory (i.e. the subtree root
can move horizontally in the tree). Each node at this level
protects a contiguous physical address space, termed the
subtree region. In order to efficiently determine the most
frequently accessed subtree region, AMNT makes use of a
lightweight history buffer.
The history buffer has 𝑛 entries and tracks the 𝑛 most

recent memory writes. Each entry has a subtree index (iden-
tified by the index of the node within the subtree level) and
a 𝑙𝑜𝑔2𝑛 counter. On a data write, the subtree index of the cor-
responding data address is updated by scanning the history
buffer for that index and incrementing the counter. If the
node becomes the most frequently accessed, swapping the
node with the head element ensures the head of the buffer
always refers to the most frequently used subtree region (the
largest counter). While updating the history buffer can be
done in parallel with the initial counter fetch (all authenti-
cations need to fetch the encryption counter), the history
buffer is not fully sorted to minimize complexity. In our ap-
proach, the head element is guaranteed to be the maximum.
After 𝑛 data updates to memory (64 by default), the head
of the buffer is selected as the new subtree root. After the
next subtree root is established, the counters in the buffer
get zeroed out and the tracking starts again.

When transitioning from subtree𝑇 to𝑇 ′, all inner integrity
nodes of𝑇 must be persisted before𝑇 ′ can implement the leaf
persistence protocol in order to preserve the crash consis-
tency and security guarantees. Note that the only ancestral
paths from subtree 𝑇 that need to be written to memory are
those originating from modified (dirty) data. We can quickly
determine which nodes need to be updated in memory by
scanning the dirty bits in the metadata cache. Only nodes
in the metadata cache that fall within the subtree will have
their dirty bits set as all other metadata blocks are written-
through to memory. The path from𝑇 to the root must always
be persisted on movement.
The history buffer is a lightweight method to track the

most frequently used regions of memory to select the best
subtree root. Each entry in the history buffer requires at most
𝑙𝑜𝑔2𝑛 bits for the region’s index and an additional 𝑙𝑜𝑔2𝑛 bits
for the counter, resulting in 𝑛 ∗ (2𝑙𝑜𝑔2𝑛) additional bits. For a
subtree at level 3 (64 possible subtree regions), the additional
number of bits is 768, requiring an additional 96 bytes of
on-chip area. Thus, we find that in practice, operations such
as scanning the history buffer to increment the frequency
counter associated with a subtree region are inexpensive
(two cache accesses) relative to memory access latency. Once
found, the logic to update the buffer is a simple add and
comparator that updates the head of the buffer based on
if the target counter is larger than the head’s counter. In
the event of a tie, the current subtree root stays at the head
of the buffer to avoid a subtree movement. Given that the
updating the history buffer and transitioning the subtree are

0x0
700

000
00

0x0
800

000
00

0x0
900

000
00

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0x1
c00

000
00

0x1
e00

000
00

0x2
000

000
00

(a) Single program behavior
(lbm).

0x0
700

000
00

0x0
800

000
00

0x0
900

000
00

0.000

0.001

0.002

0.003

0.004

0x1
c00

000
00

0x1
e00

000
00

0x2
000

000
00

(b) Multiprogram behavior (
perlbench and lbm).

Figure 3.Memory accesses per address in single program
and multiprogram workloads.

not critical to the authentication of data, they can occur out
of the critical path of data authentication.

5 AMNT++
AMNT is predicated on the assumption that a small, contigu-
ous address range in physical memory is protected by the
fast subtree. However, while this assumption may hold true
for a single application, it may not in a realistic scenario (i.e.
multiprogram environment). Figure 3a shows the number of
memory accesses per physical address in the lbm benchmark
from the SPEC CPU benchmark suite, whereas Figure 3b
shows the number of memory accesses per physical address
when running two programs (perlbench and lbm) in parallel.
As evidenced by the figure, multicore systems that run mul-
tiple applications prove the assumption driving AMNT may
not exist in practice. To address this limitation, we consider
a protocol that has “per-core subtrees” to track hotness, but
such a solution would result in complex and large hardware
requirements for devices with hundreds of cores. Instead,
we propose a hardware-software co-design to keep hardware
complexity low and modify application behavior from the
operating system’s memory management unit to bias alloca-
tion of physical pages towards highly available subtrees in
order to maximize potential subtree locality.
To increase the effectiveness of AMNT, all applications

should ideally work in the same subtree region whenever
possible to increase subtree locality. Consolidating frequent
memory accesses into a single subtree can be an important
performance optimization, which we attempt to maximize
through lightweight modifications to the physical page allo-
cator in the operating system (OS).
In Linux, allocating physical memory is a distinct proce-

dure from allocating memory at the application level. The-
oretically, cross-page locality may be unlikely given that
physical pages will be allocated according to a binary buddy
allocation scheme and where “random” pages are reclaimed
by the OS over time. This allocation makes it difficult to rea-
son about where two virtual pages are in physical memory
relative to each other.

27



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. System configuration.
Security Configuration

BMT 8-ary integrity nodes
64-ary counters

Metadata Cache 64kB, 2-cycle latency
AMNT 64 writes per interval

Subtree Level: 3, 768 bit history
buffer, 128 bit dirty path bitmap

DDR-based PCM Configuration
Capacity 8GB PCM
Latency 305ns read [35], 391ns write [31]

In order to further increase in-memory physical locality,
we modify the buddy allocation from the Linux operating
system [2]. Our modified OS achieves this locality by re-
ordering the free area to have the chunks within the most
common free subtree region at the head of the linked list.
Physical pages are allocated from a data structure called
free_areas (i.e., an array of linked lists), where each linked
list is composed of “chunks” of physical memory. The size
of each chunk depends on the index of the linked list in the
array (e.g., chunks in a linked list at index 0 of the free_area
are 20 pages; chunks at index 1 are 21 pages). When an allo-
cation request for a single page is received, the physical page
allocator fetches the first item from the free_area linked
list at index 0, and returns it to the application. When the
linked list at index 𝑖 is empty, and the OS needs to allocate a
physical page, it will attempt to find a chunk at index 𝑖 + 1. If
it finds a chunk at 𝑖 + 1, it splits that chunk into two chunks
of size 2𝑖 pages and returns one to be allocated while adding
the other one to the linked list at index 𝑖 .

In our modified version of the buddy allocator, we modify
the linked list structure by prioritizing chunks that are phys-
ically close to one another and placing these at the head of
the linked list. As physical memory is reclaimed by the OS,
it attempts to add chunks to the linked list at the appropriate
index of the free_area depending on the chunk size. In the
AMNT++ modification, the linked list is reordered to place
chunks within the subtree region at the head of the linked
list. This approach makes each individual allocation as fast as
the standard physical allocator by taking the restructuring of
the linked list out of the critical path of a physical allocation.

The AMNT++ restructuring function is called during the
OS physical page reclamation procedure, leaving it out of the
critical path of a page allocation. The restructuring function
first scans each linked list to count how many chunks fall
under each subtree region. When the OS finishes scanning
the list, it selects the region with the greatest number of
chunks (the subtree region with the most free chunks) and
then moves all the chunks for that region to the front of a
temporary biased linked list (not in the free_area struct).
Once the OS is done with the restructuring, the OS replaces
the linked list with the new biased version.

The design decision to bias the allocator towards physical
pages at the granularity of subtree regions is intentional. The

blacksch
oles

bodytrack
facesim ferret

fluidanimate
freqmine

swaptions
x264

canneal
dedup

stre
amcluster

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
cy

cle
s

7.
91

7.
82

2.
4

6.
9

6.
9

leaf
strict

anubis
bmf

amnt
amnt++

Figure 4. Normalized cycles in single program PARSEC
workloads.

AMNT++ protocol biases the free_list towards pages in
the subtree region, so that the OS does not have to perform
these exhaustive searches when allocating pages. Given that
the locality of interest is in terms of the integrity tree nodes
coverage (e.g. at level 3 the coverage is 128MB for an 8GB
memory and scales with increased memory size), achieving
this locality is a reasonable task, even in a fragmented system.
As a result, the benefit of AMNT++ is high without being
overly intrusive on the execution of the OS and application.

6 Evaluation
Wefirst evaluate AMNTon the PARSEC benchmark suite [11]
version 3.0 with the simlarge inputs in gem5 [12], a cycle
accurate processor simulator. The processor configuration
includes a single core with a 32kB data L1 cache, a 48kB
instruction L1 cache and 1MB L2 cache. We configure the
processor with intentionally small on-chip caches to stress
the memory system and show the overheads of the secure
memory hardware. The memory system configuration is
shown in Table 1. The secure memory hardware includes a
64kB metadata cache with an 8-level BMT to remain consis-
tent with Intel SGX’s configuration [29].
We choose to use PARSEC as the primary means of eval-

uation due to its diversity of workloads and labeling of the
beginning and end of the region of interest. The latter is
important—determining the region of interest in benchmark
suites without labeled regions of interest is typically done
by running a profiling tool, like SimPoint [53]. These tools
determine the region of interest based on microarchitectural
characteristics of the workload, and the application is run
from this point for a set number of instructions. However,
we cannot compare AMNT and AMNT++ using this method-
ology as the modified OS results in a different number of
instructions, requiring different points in the program to
execute the same region of the application.

Throughout the evaluation we compare the proposed ap-
proaches (AMNT and AMNT++) against the leaf metadata
policy and the strict persistence policy. In addition, we also
compare the proposed approaches against various protocols

28



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

body and fluid

swap and stre
am

x264 and freq
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
cy

cle
s

3.
11

3.
11

leaf
strict

anubis
bmf

amnt
amnt++

Figure 5. Normalized cycles in multiprogram PARSEC work-
loads.

proposed in the literature, anubis and bmf, which we imple-
mented based on their design descriptions [26, 85]. Results
labeled as amnt show the proposed protocol without the
modified operating system, and amnt++ show AMNT with
the modified operating system.

6.1 Single Program Analysis
On average, AMNT has a 16% performance overhead relative
to the volatile secure memory scheme and AMNT++ has a
10% performance overhead. Figure 4 shows the cycles for
each configuration normalized to the volatile secure memory
results. Leaf and strict persistence have 8% and 2.39𝑋 perfor-
mance overhead respectively. AMNT effectively negotiates
the trade-off between leaf and strict persistence, achieving its
design goal of having the near-leaf performance overhead.

On the other hand, Anubis [85] largely benefits from leaf
persistence, but incurs a slow-path case on a metadata cache
miss. For workloads that have bad metadata cache efficacy
(i.e., canneal), Anubis results in large performance overhead,
2.4𝑋 compared to the volatile secure memory system. can-
neal has 30.4% metadata cache hit rate. In contrast, AMNT’s
performance is directly dependent on the application’s spa-
tial locality, as opposed to cache efficacy, and as a result is
able to lower canneal’s overhead down to less than 0.1%.

6.2 Multiprogram Analysis
As described in Section 5, running a single program may not
fully stress the underlying protocol in AMNT as the single
program’s address space will be the only one exhibiting lo-
cality in memory. Thus, in this section we use multiprogram
workloads to approximate real-world behaviors in which
the memory system is subject to the interference due to the
interaction of multiple processes. In order to perform such
an evaluation, we configure our environment with combina-
tions of programswith temporarily similar regions of interest
from the PARSEC benchmark suite. The multiprogram eval-
uation methodology is consistent with prior work [74]. To
choose the pairs of multiprogram workloads, we selected
benchmarks whose region of interest appeared at the most

similar times to ensure that the regions of interest of each
benchmark is evaluated in parallel. These workloads are:
bodytrack and fluidanimate, swaptions and streamcluster, and
x264 and freqmine. To ensure that the evaluation always cov-
ers both benchmarks’ regions of interest, we start measuring
when the second benchmark reaches the beginning of its
region of interest, and stop the simulation when the first
benchmark reaches the end of its region of interest. The pre-
sented results come from running both region of interests in
parallel. The simulator configuration for the multiprogram
analysis includes two cores, each with a private 32kB data L1
cache, 48kB instruction L1 cache, and 128kB L2 cache. Both
cores share a 1MB L3 cache.
AMNT++ is effective at improving AMNT performance.

Figure 5 shows the performance normalized to the volatile
secure memory setting for all the approaches for the three
pairs of multiprogram workloads (including prior work and
AMNT and AMNT++). AMNT++ counteracts the multipro-
gram behavior that impacts the efficacy of AMNT. For ex-
ample, the bodytrack and fluidanimate workload display an
example when applications may impact their mutual spatial
locality. In this scenario, AMNT++ can make a difference by
reordering the physical pages accordingly and increasing
subtree hit rate from 91% to 97%. As a result, AMNT++ perfor-
mance overhead is reduced from 8% (AMNT) to less than .1%
compared to leaf persistence (the best performing approach).
Note that the performance overhead of AMNT in the single
program experiments for bodytrack and fluidanimate are less
than .1% and 2.1% respectively.
The swaptions and streamcluster workload and the x264

and freqmine workload are not memory intensive, and as a
result the performance overhead is negligible across both
approaches. One could imagine a theoretically adversarial
case in which the subtree bounces back and forth between
subtree regions, especially with distinct address spaces for
multiple processes. Our evaluation finds that these cases
do not occur in practice. In the study of single program
workloads, we find that the subtree root moves 0.3% of data
accesses on average (3 subtree root movements for every
1000 data memory accesses). In multiprogram workloads,
this occurs 0.1% of data accesses, which implies no significant
difference in memory behavior.

6.3 Subtree Sensitivity Analysis
As described in Section 4, the AMNT subtree level can be
configured in the BIOS so that the hardware can be modified
for varying workload characteristics. To build an intuition
about these workload characteristics, we present a sensitiv-
ity study of storing the subtree at varying levels under the
multiprogram workloads. As these configurations are inten-
tionally designed to constrain the efficacy of AMNT, we also
use this section to demonstrate the efficacy of AMNT++ at
changing application behavior to improve subtree hit rates.

29



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

body and fluid swap and stream x264 and freq0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d 
cy

cle
s

L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8

amnt
amnt++

Figure 6. Normalized cycles in multiprogram PARSEC work-
loads varying AMNT subtree level.

Figure 6 shows performance impact of varying the AMNT
subtree root level with and without the modified operating
system (AMNT++ and AMNT), and Figure 7 shows the sub-
tree hit rates for the same configurations. As the subtree root
level increases (i.e., moves closer towards the leaves), it pro-
tects less data thereby constraining its efficacy. For example,
in the bodytrack and fluidanimate workload, the subtree hit
rate improves by at least 5% when the subtree root is placed
between levels 3 and 7 with AMNT++ compared to AMNT.
On the other hand, workloads like swaptions and streamclus-
ter and x264 and freqmine, the runtime performance is not
bound by the secure memory hardware and as a result the
performance impact is less evident. This result demonstrates
that AMNT++ is able to improve the hot region tracking of
the underlying hardware without needing to complicate the
hardware in a multiprogram environment.

6.4 The Cost of AMNT++
In traditional systems evaluation, modifying the operating
system can be viewed as an extreme measure as it impacts all
applications running on the system, and may incur unavoid-
able overheads throughout the system. Given that AMNT
requires new hardware, the concern over potential adoption
is less pertinent, as using a modified operating system on a
new system is less burdensome. We evaluate the PARSEC
multiprogram workloads with and without the operating
systems modifications in AMNT++ to evaluate the runtime
overhead of the modified operating system and quantify how
intrusive it is. To perform this evaluation, we use the single
program and multiprogram configurations where appropri-
ate.

Table 2 describes the impact of the modified OS on applica-
tion behavior. The normalized performance column reflects
the number of cycles to run the multiprogram workload
with the modified OS over the number of cycles with the
unmodified OS. The impact of the modified OS is negligible
on the overall performance. This result is due to the fact that
the physical reclamation of pages is an infrequent operation,

body and fluid swap and stream x264 and freq0

20

40

60

80

100

Su
bt

re
e 

Hi
t R

at
e

L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8

amnt
amnt++

Figure 7. Subtree hit rates for multiprogram PARSEC work-
loads varying AMNT subtree level.

and the modifications are mostly transparent to the progress
of the application.

On the other hand, the number of additional instructions
of the OS modification is relatively small. The second column
of Table 2, the instruction overhead, reflects the additional
number of instructions in the modified OS compared to the
unmodified OS. On average across the PARSEC benchmark
suite, the instruction overhead of AMNT++ is 1.96%.

Given that the number of additional instructions are small
and the impact on performance overhead is small, we con-
clude that any speedup of AMNT++ is due to the increased
locality of the application, improving the overall efficacy of
the on-chip cache hierarchy. The reason for the additional in-
structions not impacting performance is that the reclamation
process is typically off the critical path (i.e., when physical
pages are reclaimed) by design.

6.5 Multithread Analysis
We evaluate AMNT on the SPEC CPU 2017 benchmark
suite [13] to perform multithreaded analysis consistent with
prior art [5, 10, 25, 82, 85]. We run the speed benchmarks
with ref inputs, and we fast-forward to a region of interest as
determined by SimPoint [53] in the benchmark before sim-
ulating 500 million instructions. As done in prior work, we
use a four core simulation with a 32kB data L1 cache, 48kB
instruction L1 cache, 512kB L2 cache, and 8MB L3 cache.
Figure 8 shows the normalized cycles of the SPEC CPU

2017 benchmarks over a volatile secure memory system
which does not account for the persistent state of the meta-
data. AMNT reduces runtime overhead by as much as 41%

Table 2. Impact of the modified operating system in multi-
program workloads.

Normalized Performance Instruction Overhead
body and fluid 0.992 1.004
swap and stream 0.967 1.021
x264 and freq 1.013 1.01

30



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

pe
rlb

en
ch gc
c

mcf
ca

ctu
BS

SN lbm
om

ne
tpp wrf

xa
lan

cb
mk

po
p2

de
ep

sje
ng

im
ag

ick lee
la na
b

ex
ch

an
ge

2
fot

on
ik3

d xz

gm
ea

n

0

1

2

No
rm

al
ize

d 
cy

cle
s

3.
60

25
.2

3.
78

5.
04

24
.6

6.
8

6.
7

7.
4

7.
2

3.
49

3.
42

leaf strict amnt anubis bmf

Figure 8. Runtime comparison of AMNT, Anubis, and BMF protocols for the SPEC 2017 CPU benchmarks normalized to
writeback secure memory protocol. Lower is better.

and by 13% on average compared to the state-of-the-art, Anu-
bis [85]. Compared to the leaf and strict persistence baselines,
AMNT has a runtime overhead of less than 2% compared
to leaf persistence, and up to an 8X reduction in overhead
relative to strict persistence (shown in Figure 8).
AMNT has the biggest impact on write-intensive appli-

cations. Write-intensive workloads (e.g., xz, lbm, deepsjeng)
suffer from the strictest persistent mechanisms, as they place
writes on the critical path of application execution. For xz,
the most write memory intensive benchmark, AMNT results
in 32% runtime overhead while Anubis has 41% overhead
and BMF has a 7𝑋 overhead. AMNT reduces the runtime
overhead as it uses leaf persistence semantics on the hot
regions of the programs, while keeping the recovery time
bounded to a predefined amount. Read-intensive applica-
tions are largely optimized by volatile on-chip caches and
are unaffected by the metadata persistence model. However,
for mechanisms that add complex calculation for memory
reads (such as Anubis and BMF), the persistence model still
adds to the runtime overhead. For example, AMNT exhibits
negligible overhead versus leaf in cactuBSSN and mcf be-
cause they are mostly read memory-intensive benchmarks.
Yet, Anubis and BMF both have significant overhead. Anubis
suffers from costly metadata cache misses and BMF simply
resembles the behavior of the strict performance protocol
resulting in high performance overhead. In contrast, AMNT
improves performance overhead as it optimizes metadata
cache behavior.

6.6 Hardware Overhead
Spatial overheads for secure memory should be minimized
as on-chip area is in high demand for various hardware op-
timizations across a multitude of workloads. For example,
if secure memory hardware occupies on-chip space for the
LLC, then the application will incur more LLC misses and
be further bound by secure memory. Furthermore, applica-
tions are becoming more memory intensive, placing more

Table 3. Hardware overheads of the state-of-the-art for a
64kB metadata cache. Note that BMF overheads is metadata
cache size dependent and it requires an additional 6 bits of
volatile capacity per cache line.

NV On-Chip Vol. On-Chip In-Memory
BMF 4 kB 768 B -

Anubis 64 B 37 kB 37 kB
AMNT 64 B 96 B -

emphasis on the importance of caching values in the larger
components of the chip (i.e. LLC). Finally, trends in secure
memory have moved towards reducing the in-memory spa-
tial overhead of secure memory, so storing more security
metadata in memory is undesirable [60, 73, 79].
We compare the on-chip volatile and non-volatile over-

heads separately as these may be composed of different tech-
nologies (SRAM vs. Flash). The hardware area overheads for
Anubis, BMF and AMNT are listed in Table 3.We assume that
the on-chip root of the BMT must reside in on-chip Flash to
conform to the threat model which keeps the root on-chip at
all times for all three mechanisms. In BMF, the non-volatile
on-chip space consists of an additional non-volatile metadata
cache used to store the subtree roots (4kB by default in that
work). The volatile on-chip space requires an additional 6
bits per cache line for the frequency counters in addition
to the metadata cache. For a 64kB metadata cache, which
holds 1024 64B cache lines, the frequency counters amount
to 768B.
In Anubis, the non-volatile on-chip space is occupied by

the additional root required to track the shadow Merkle Tree
(64B). The volatile on-chip space is composed of both the
metadata cache and, optionally, the shadowMT cache (37kB).
Area overhead in both of these prior works is a function

of memory size. In BMF, a bigger metadata cache will result
in more space for frequency counters, or new workloads
might demand more subtrees to be tracked for performance.

31



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 4. Recovery times (in ms) for the different protocols
as a function of memory size.

2.00TB 16.00TB 128.00TB BMT stale %
leaf 6,222.21 49,777.78 398,222.21 100%
strict 0 0 0 0%
Anubis 1.30 1.30 1.30 fixed
Osiris 50,666.67 405,333.32 3,242,666.64 100%*
BMF 0 0 0 0%

AMNT L2 777.77 6,222.21 49,777.78 12.5%
AMNT L3 97.22 777.77 6,222.21 1.56%
AMNT L4 12.15 97.22 777.77 0.2%

Our implementation of Anubis include the shadow table in a
distinct on-chip cache for a 64kB metadata cache to remain
consistent with [29], and wemodel the non-volatile metadata
cache in BMF as a distinct on-chip cache with a non-volatile
metadata cache proportional to the volatile metadata cache
size (4kB).

In contrast, one of AMNT’s goals is to limit the additional
hardware components both on-chip and in-memory. Like
Anubis, AMNT has an additional non-volatile register on-
chip to track the root of the fast subtree. The volatile on-chip
space includes a 768-bit history buffer, and the metadata
cache. The 37kB volatile shadow cache in Anubis is much
bigger in capacity than the volatile history buffer required
for AMNT. The 4kB non-volatile subtree root cache in BMF
requires a significantly greater non-volatile on-chip resource
compared to the single non-volatile on-chip register required
in AMNT to store the subtree root. AMNT achieves its design
goal of limiting additional hardware components on-chip
and in memory. In addition, as discussed in the next section,
AMNT’s performance is agnostic to other features, such as
metadata cache size and memory size.

6.7 Recovery
The recovery process requires both the fetch of counter val-
ues from memory and the computation of the hashes of
data-independent regions. For example, nodes within a level
(i.e., siblings or cousins in a BMT) are data independent,
however since a parent node cannot be computed without
knowing the value of its children, parents and children have
a data dependent relationship in hash recomputation. To re-
lieve this data dependency, the re-computed hash values for
a level are written back to memory before the next level can
start the hash computation. Seeing as the hash computation
is both fast and pipelined, we assume that the recovery time
is bound by the memory bandwidth. We note that the split
of reads and writes in the recovery workload is a ratio of
8:1 (reads:writes) as eight children are to be fetched in order
to compute a parent hash (which will be written back to
memory). A single Optane DIMM supports around 4 GB/s
of total bandwidth when subjected to this mixed read/write

sequential workload [1], of which around half of this band-
width (2 GB/s) is dedicated to reads. Assuming a six-channel
machine [31, 35], this provides a total read bandwidth, at
recovery, of 12 GB/s to memory, which is the essential per-
formance bottleneck for recovery. We use this bandwidth
to generate the data in Table 4, which shows the time it
takes to recover each of the baseline and state-of-the-art
configurations after a system failure.
Unlike prior approaches, recovery time in AMNT scales

with the level in which the subtree root is placed and is
reconfigurable. For example, with the AMNT subtree root
configured at level 3 of the BMT, it has a slower recovery time
than Anubis [85] (as shown in Figure 4). In the event that a
service provider cannot tolerate long periods of downtime,
AMNT can be re-configured with a subtree root closer to
the leaves. For instance, with the subtree root configured at
level 4 for a 2TB memory the recovery time is 0.01 seconds
(see Table 4).

7 Related Work
7.1 Secure Memory
Secure memory is an active area of research, with significant
improvements to the original secure memory design over
the last two decades. The state-of-the-art secure memory
solutions combine one-time-pads (OTP) and counter-mode
encryption done in hardware [8, 28, 58, 71, 79]. For integrity
verification, state-of-the-art include the use of modified Bon-
sai Merkle Trees (BMTs) for performance, fault tolerance
and area optimizations. In Morphable Counters, Saileshwar
et.al. [60] look to further reduce the area overhead of the
integrity tree by introducing novel mechanisms for having
a multi-arity tree that can be adapted based on the secu-
rity and performance needs of the system. Synergy [61] is
a mechanism that combines properties of secure memory
along with Error Correcting Codes (ECC) in memory to com-
pact the amount of memory overhead required to store the
data HMACS. Most of these techniques are orthogonal to
the proposed work and can be implemented in conjunctions
with AMNT.

7.2 Hardware for SCM
Hardware for storage class memory, and in particular, for en-
forcing crash-consistency of data, has had two major themes
in the literature: memory persistency and persistent trans-
actions. The earlier theme focused on minimal hardware
primitives for enforcing ordering of data updates into persis-
tent memory [22, 36, 39, 49], broadly termed memory persis-
tency [51]. The latter theme explored the support of trans-
actional updates to persistent memory within the architec-
ture [15, 37, 68, 77, 84], in the style of hardware transactional
memory [30]. Battery-backed caches [62] provide new chal-
lenges and opportunities for application persistence [81, 83],

32



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

and the persistence of securitymetadata [4, 26, 32], but know-
ing how much battery is required for data-dependent flush-
ing remains an open issue, and can further complicate hard-
ware overheads.

7.3 Secure SCM
Anubis [85], much like AMNT, provides low run-time over-
head and fast recovery. However, Anubis takes a fundamen-
tally different approach to crash consistency, and enforcing
this protocol has implications on runtime behaviors and over-
heads. Anubis tracks the metadata address currently residing
in the volatile state (i.e., in the metadata cache) in persistent
memory. This region of memory, dubbed a “shadow table”,
essentially creates a log of all potentially stale metadata val-
ues in the persistent state at the time of a crash. Thus, any
update to the cache state (misses, evictions, and writebacks)
require updating the state of the in-memory shadow table.
However, because this table resides in untrusted memory, it
too needs to be protected by an auxiliary “shadow Merkle
tree” to preserve its integrity. Thus, updates to the shadow
table also result in updates to the auxiliary “shadow Merkle
tree.” While this protocol results in low runtime overhead in
most cases, it makes the case of a metadata cache miss more
expensive. Anubis works from the observation that updating
this table is infrequent because the metadata cache tends to
exhibit good locality. We further note in our evaluation that
updating the shadow table needs to be atomic with updat-
ing the tree state, and there may be multiple shadow table
updates on a single authentication (due to multiple misses
in the metadata cache). Furthermore, it requires caching the
entire shadowMerkle Tree on-chip to avoid even more mem-
ory persists per data access. By contrast, the AMNT protocol
trades off tracking of the stale nodes for minimal area over-
heads while still bounding the recovery time. Furthermore,
AMNT is not bound by the hit rate of the metadata cache.
Instead, it is dependent on a hot region tracking mechanism,
in which the complexity is offloaded to software.

Bonsai Merkle Forest (BMF) [26] is a protocol designed to
dynamically reduce the leaf-to-root write path for frequently
accessed nodes. To do so, BMF extends the persistent regis-
ter used to store the BMT root into a non-volatile metadata
cache to store several roots of frequently accessed values
(dubbed the “persistent root set”). BMF determines which
BMT nodes qualify to be stored in the persistent root set, and
tracks accesses frequency counters for the cached blocks in
the non-volatile metadata cache. On a pre-determined inter-
val, BMF uses these access frequency counters to “prune” a
frequently accessed root into its most frequently accessed
children or “merge” colder roots into their parent node. This
mechanism ensures that all nodes in the BMT are covered by
a persistent root, which is an important correctness property
for this approach. However, this property also implies that it
is infeasible to perform a hybrid metadata persistence strat-
egy. As a result, it suffers from the limitations of whichever

crash consistency policy it implements. Unlike BMF, AMNT
does not assume full leaf coverage of a fast subtree, so it can
improve runtime overhead without jeopardizing fast recov-
ery. AMNT’s protocol does not entail incremental changes to
track hot nodes, and as a result exhibits better performance
than BMF. Furthermore, AMNT does not require buffers of
non-volatile memories on-chip, to cache the large number
of roots required for full leaf coverage as BMF does.
Osiris’s [82] method of persistence hinges on reducing

memory accesses when updating the tree in favor of cache
updates, only persisting integrity tree leaves to memory
every 𝑛 updates, where 𝑛 is a set interval. Persist Level Par-
allelism [25] focuses on fast integrity tree updates and ex-
plores the benefits of having parallel updates of the BMT
under strict conditions that guarantee correct crash recover-
ability. However, these works are not dynamic to changing
application behavior and as a result do not see the benefits in
terms of recovery time in the case of Osiris nor normal case
runtime overhead in the case of Persist Level Parallelism.

Other works that have proposed using a fast subtree can be
classified into two works that leverage indirection [6, 76] and
those that use data addresses to determine its membership or
non-membership in the fast subtree [56]. AMNT uses data
addresses to determine membership in the fast subtree proto-
col. This design choice is an advantage over approaches that
use indirection for two reasons: (1) approaches that leverage
indirection cannot begin until some information is fetched
that determines which authentication protocol to use, and
(2) the logic controlling this indirection leads to significant
on-chip area and in-memory storage overheads (additional
caches, in-memory queues, etc. [31, 57]). Assure describes
a protocol where a single subtree is tracked to reduce the
authentication and update path length for frequently ac-
cessed data [56]. However, this work does not target multiple
persistence strategies. AMNT intentionally addresses this
non-trivial question, and results in performance benefits.

Some prior works consider multiple persistence protocols
in secure memory to benefit performance [10, 65]. For exam-
ple, Triad-NVM describes a protocol in which entire levels
of the tree conform to a particular persistence protocol [10].
Such a behavior is similar to leaf persistence, where leaves
and some number of ancestral levels of the leaves are written-
through to main memory. AMNT similarly implements mul-
tiple persistence strategies, but determining which strategy
to use is done dynamically based on application behavior.
OMT describes a protocol for hybrid embedded volatile and
non-volatile memories, that leverages a single integrity tree
with different strategies for data in different devices [65].
AMNT abstracts well to a hybrid SCM-DRAM machine as it
does not require significant protocol or hardware changes.
AMNT protects SCM, and a traditional BMT protects DRAM.
This solution only requires an additional (volatile) register
for the BMT and knowledge at the memory controller of the
SCM/DRAM physical address partition. Furthermore, AMNT

33



A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

dynamically leverages leaf metadata persistence in the most
frequently accessed SCM region.

8 Conclusion
Storage class memory (SCM) offers high density, non-volatile
storage with dramatically faster speeds than traditional stor-
age systems. However, this non-volatility creates new se-
curity challenges. In this paper, we present A Midsummer
Night’s Tree (AMNT), a novel hybrid persistent BonsaiMerkle
Tree (BMT) protocol for integrity-protected non-volatile
SCM. AMNT improves performance overhead by up to 41%
compared to the state-of-the-art approach while providing
fast and configurable recovery times that are a function of
the level of the subtree root rather than the memory size.

9 Acknowledgment
We thank the anonymous reviewers for their helpful com-
ments. This work was supported by NSF grant #1909715, NSF
grant #2239373 (CAREER), and a grant from Google through
the exploreCSR program.

A Artifact Appendix
A.1 Abstract
This artifact includes the implementation of AMNT, and
other prior art in secure memory in gem5 v22.0.0.2; and the
OS modifications for AMNT++ in Linux v4.14.

A.2 Artifact check-list (meta-information)
• Algorithm: We propose A Midsummer Night’s Tree, a fast
subtree tracking mechanism for Secure SCMs. We optimize
the protocol by implementing a lightweight OS modification
in the physical page allocator called AMNT++.

• Program: We use gem5 v22.0.0.2 for simulation. The code
modifications can be found in src/mem/mee/amnt.{hh,cc}.
The directory src/mem/mee has the implementation of the
baseline protocol and other prior works. The modified OS
(AMNT++) can be found in the linux-build directory.

• Compilation: To build gem5, once inside the main
gem5 directory run the following command: scons
build/ARM/gem5.opt -j ’nproc’. Note ’nproc’ can
be replaced with a smaller number of cores to use
for compilation. To build the modified Linux kernel
(optional), once inside the linux-build directory run
the following command where 𝑛𝑝𝑟𝑜𝑐 is replaced by
the number of available cores on the machine: make
ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-
gem5_defconfig && make ARCH=arm64
CROSS_COMPILE=aarch64-linux-gnu- -j ’nproc’.

• Howmuch disk space required (approximately)?: 72GB.
• How much time is needed to prepare workflow (ap-
proximately)?: Approximately 1 hour.

• How much time is needed to complete experiments
(approximately)?: 6-48+ hours per test, depending on the
benchmark. For long running tests, they can be constrained
to a more reasonable runtime by specifying a consistent
maxinsts for all configurations in a benchmark.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.10795547

A.3 Description
A.3.1 How to access. The artifact can be downloaded
from https://doi.org/10.5281/zenodo.10795547.

A.3.2 Hardware dependencies. Each experiment requires
single core (ISA agnostic) and about 8GB of RAM. Given the
long running requirements of each experiment, we suggest
running experiments for each benchmark and each proto-
col in parallel with as many cores as available in the target
machine.

A.3.3 Software dependencies. Gem5 works best on
Ubuntu, and is largely unsupported on other OSes.

A.4 Installation
Unzip the provided zip files such that the decompressed
dist and checkpoints directories are subdirectories of the
unzipped gem5 directory. Then, compile the simulator from
the provided source in the gem5 directory.
$ wget https://zenodo.org/records/10795547/files/gem5.zip
$ unzip gem5.zip
$ wget

https://zenodo.org/records/10795547/files/checkpoints.zip↩→
$ wget https://zenodo.org/records/10795547/files/dist.zip
$ wget

https://zenodo.org/records/10795547/files/main_results.zip↩→
$ wget

https://zenodo.org/records/10795547/files/parse_results.zip↩→

$ unzip checkpoints.zip
$ unzip dist.zip
$ unzip main_results.zip
$ unzip parse_results.zip
$ mv checkpoints gem5/
$ mv dist gem5/
$ mv main_results gem5/
$ mv parse_results.py gem5/

$ sudo apt install build-essential git m4 scons zlib1g
zlib1g-dev libprotobuf-dev protobuf-compiler
libprotoc-dev libgoogle-perftools-dev python3-dev
python3

↩→
↩→
↩→
$ cd gem5
$ scons build/ARM/gem5.opt -j 4

Note, compiling gem5 with scons will print a benign warn-
ings concerning libpng and HDF5 C++ libraries.

A.5 Evaluation and expected results
To run the experiments use the provided run_benchmark.sh
script to run each secure memory protocol for each bench-
mark. The output from each simulation is stored in the
stats.txt file associated with the output, and can be cleanly
parsed by calling python3 parse_results.py to recreate
the main result of the paper (Figure 4).

34

https://doi.org/10.5281/zenodo.10795547


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

The run_benchmark.sh takes in six inputs:
1. The type of operating system to be used: modified (for

amnt++) or unmodified.
2. The benchmark suite to run: parsec or parsec_multiprog.
3. The name of the benchmark to be run on the simulator.
4. The type of run to be run: ParsecSP-HW, ParsecSP-

HWSW (for amnt++), ParsecMP-HW, or ParsecMP-
HWSW (for amnt++).

5. The number of instructions to simulator: suggested, 1
billion.

6. The protocol to simulate : leaf, strict, anubis (prior
work), bmf (prior work), amnt (use benchmark type to
specify amnt++).

The run_benchmark.sh script can be run with the −ℎ op-
tion to see the list of arguments that it excepts and an expla-
nation for each. For example, to run blackscholes:
$ bash run_benchmark.sh unmodified parsec blackscholes

ParsecSP-HW 1000000000 leaf↩→
$ bash run_benchmark.sh unmodified parsec blackscholes

ParsecSP-HW 1000000000 strict↩→
$ bash run_benchmark.sh unmodified parsec blackscholes

ParsecSP-HW 1000000000 anubis↩→
$ bash run_benchmark.sh unmodified parsec blackscholes

ParsecSP-HW 1000000000 bmf↩→
$ bash run_benchmark.sh unmodified parsec blackscholes

ParsecSP-HW 1000000000 amnt↩→
$ bash run_benchmark.sh modified parsec blackscholes

ParsecSP-HWSW 1000000000 amnt↩→

Running this for each benchmark produces all of the out-
put required to recreate the results in Figure 4 of the original
manuscript.

References
[1] Intel® optane™ persistent memory 200 series brief. https:

//www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-persistent-memory-200-
series-brief.html. Accessed: 2023-04-27.

[2] Linux kernel documentation. https://www.kernel.org/doc/html/v4.9/
kernel-documentation.html. Accessed: 2022-07-06.

[3] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity principles, implementations, and applications. ACM
Transactions on Information and System Security (TISSEC), 13(1):1–40,
2009.

[4] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James
Tuck, and Yan Solihin. Bbb: Simplifying persistent programming
using battery-backed buffers. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 111–124.
IEEE, 2021.

[5] Mazen Alwadi, Aziz Mohaisen, and Amro Awad. Phoenix: Towards
persistently secure, recoverable, and nvm friendly tree of counters.
arXiv preprint arXiv:1911.01922, 2019.

[6] Mazen Alwadi, Aziz Mohaisen, and Amro Awad. Promt: optimizing
integrity tree updates for write-intensive pages in secure nvms. In
Proceedings of the ACM International Conference on Supercomputing,
pages 479–490, 2021.

[7] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. In-
novative technology for CPU based attestation and sealing. In Proc.
International Workshop on Hardware and Architectural Support for Se-
curity and Privacy (HASP), 2013.

[8] Ittai Anati, FrankMckeen, ShayGueron, HuangHaitao, Simon Johnson,
Rebekah Leslie-Hurd, Harish Patil, Carlos Rozas, and Hisham Shafi.
Intel software guard extensions (Intel SGX). In Tutorial at International
Symposium on Computer Architecture (ISCA), 2015.

[9] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. Let’s talk about
storage & recoverymethods for non-volatile memory database systems.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 707–722, 2015.

[10] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair.
Triad-nvm: Persistency for integrity-protected and encrypted non-
volatile memories. In Proceedings of the 46th International Symposium
on Computer Architecture, pages 104–115, 2019.

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implica-
tions. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 72–81, 2008.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[13] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
pages 41–42, 2018.

[14] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Pre-
cision, security, and performance. ACM Computing Surveys (CSUR),
50(1):1–33, 2017.

[15] Miao Cai, Chance C. Coats, and Jian Huang. Hoop: Efficient hardware-
assisted out-of-place update for non-volatile memory. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 584–596, 2020.

[16] Zora Caklovic, Product Expert, Oliver Rebholz, et al. Bringing persis-
tent memory technology to sap hana: Opportunities and challenges.
Annual SNIA Persistent Memory Summit, 2017.

[17] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging Locks for Non-volatileMemory Consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applicat ions, OOPSLA ’14, pages 433–452,
New York, NY, USA, 2014. ACM.

[18] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. Non-control-data attacks are realistic threats. In USENIX security
symposium, volume 5, page 146, 2005.

[19] Zhengguo Chen, Youtao Zhang, and Nong Xiao. Cachetree: Reduc-
ing integrity verification overhead of secure nonvolatile memories.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(7):1340–1353, 2020.

[20] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic.
Secureme: a hardware-software approach to full system security. In
Proceedings of the international conference on Supercomputing, pages
108–119, 2011.

[21] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
persistent objects fast and safe with next-generation, non-volatile
memories. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’11, pages 105–118, New York, NY, USA, 2011. ACM.

[22] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
’09, page 133–146, New York, NY, USA, 2009. Association for Comput-
ing Machinery.

35

https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.kernel.org/doc/html/v4.9/kernel-documentation.html
https://www.kernel.org/doc/html/v4.9/kernel-documentation.html


A Midsummer Night’s Tree: Efficient and High Performance Secure SCM ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[23] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi,
Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael
Franz. Readactor: Practical code randomization resilient to memory
disclosure. In 2015 IEEE Symposium on Security and Privacy, pages
763–780. IEEE, 2015.

[24] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. Memory corruption
attackswithin android tees: a case study based on op-tee. In Proceedings
of the 15th International Conference on Availability, Reliability and
Security, pages 1–9, 2020.

[25] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin. Per-
sist level parallelism: Streamlining integrity tree updates for secure
persistent memory. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 14–27. IEEE, 2020.

[26] Alexander Freij, Huiyang Zhou, and Yan Solihin. Bonsai merkle forests:
Efficiently achieving crash consistency in secure persistent memory.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 1227–1240, 2021.

[27] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten Van Dijk, and
Srinivas Devadas. Caches and hash trees for efficient memory integrity
verification. In Proc. International Symposium on High Performance
Computer Architecture (HPCA), 2003.

[28] Shay Gueron. A memory encryption engine suitable for general pur-
pose processors. Proc. International Association for Cryptologic Research
(IACR), 2016.

[29] Youngkwang Han and John Kim. A novel covert channel attack using
memory encryption engine cache. In Proceedings of the 56th Annual
Design Automation Conference 2019, pages 1–6, 2019.

[30] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, ISCA ’93,
page 289–300, New York, NY, USA, 1993. Association for Computing
Machinery.

[31] Takahiro Hirofuchi and Ryousei Takano. A prompt report on the
performance of intel optane dc persistent memory module. IEICE
TRANSACTIONS on Information and Systems, 103(5):1168–1172, 2020.

[32] Jianming Huang and Yu Hua. Ensuring data confidentiality in eadr-
based nvm systems. IEEE Computer Architecture Letters, 21(2):153–156,
2022.

[33] Yutaka Ito and Yuan He. Apparatus and methods for refreshing mem-
ory, 2019. U.S. Patent 11062754B2.

[34] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and O perating Systems, ASPLOS ’16, pages
427–442, New York, NY, USA, 2016. ACM.

[35] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane dc
persistent memory module. arXiv preprint arXiv:1903.05714, 2019.

[36] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Effi-
cient persist barriers for multicores. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, page 660–671,
New York, NY, USA, 2015. Association for Computing Machinery.

[37] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. Atom:
Atomic durability in non-volatile memory through hardware logging.
In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 361–372, 2017.

[38] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B Lee. Nohype: vir-
tualized cloud infrastructure without the virtualization. In Proceedings
of the 37th annual international symposium on Computer architecture,
pages 350–361, 2010.

[39] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. Dele-
gated persist ordering. In 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 1–13, 2016.
[40] Tamara Silbergleit Lehman, Andrew Douglas Hilton, and Benjamin C.

Lee. PoisonIvy: Safe speculation for secure memory. In Proc. Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[41] Tamara Silbergleit Lehman, Andrew Douglas Hilton, and Benjamin C.
Lee. MAPS: Understandingmetadata access patterns in secure memory.
In Proc. International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2018.

[42] Mengya Lei, Fan Li, Fang Wang, Dan Feng, Xiaomin Zou, and Renzhi
Xiao. Secnvm: An efficient and write-friendly metadata crash consis-
tency scheme for secure nvm. ACM Transactions on Architecture and
Code Optimization (TACO), 19(1):1–26, 2021.

[43] David Lie, Thekkath Chandramohan, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. Architectural support
for copy and tamper resistant software. SIGPLAN Notices, 2000.

[44] David Lie, Chandramohan A Thekkath, and Mark Horowitz. Imple-
menting an untrusted operating system on trusted hardware. In Proc.
Symposium on Operating Systems Principles (SOSP), 2003.

[45] Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya Can
Tuğrul, Steve Rhyner, Meryem Banu Cavlak, Joël Lindegger, Moham-
mad Sadrosadati, and Onur Mutlu. Rowpress: Amplifying read dis-
turbance in modern dram chips. In Proceedings of the 50th Annual
International Symposium on Computer Architecture, pages 1–18, 2023.

[46] Stephen McLaughlin, Charalambos Konstantinou, Xueyang Wang, Lu-
cas Davi, Ahmad-Reza Sadeghi, Michail Maniatakos, and Ramesh Karri.
The cybersecurity landscape in industrial control systems. Proceedings
of the IEEE, 104(5):1039–1057, 2016.

[47] Ralph C Merkle. Protocols for public key cryptosystems. In Proc.
Symposium on Security and Privacy (SP), 1980.

[48] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 39(8):1555–1571, 2019.

[49] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. An Analysis of Persistent Memory Use
with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 135–148, New York, NY, USA,
2017. ACM.

[50] Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Willhalm,
and Peter Bumbulis. Instant recovery for main memory databases. In
CIDR, 2015.

[51] Steven Pelley, Peter M Chen, and Thomas F Wenisch. Memory persis-
tency. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 265–276. IEEE, 2014.

[52] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai
Xu. A survey on systems security metrics. ACM Computing Surveys
(CSUR), 49(4):1–35, 2016.

[53] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-
wood, and Brad Calder. Using simpoint for accurate and efficient sim-
ulation. ACM SIGMETRICS Performance Evaluation Review, 31(1):318–
319, 2003.

[54] pmem.io. Persistent Memory Development Kit, 2017. http://pmem.io/
pmdk.

[55] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and
Deliang Fan. Deepsteal: Advanced model extractions leveraging effi-
cient weight stealing in memories. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1157–1174. IEEE, 2022.

[56] Joydeep Rakshit and Kartik Mohanram. Assure: Authentication
scheme for secure energy efficient non-volatile memories. In Pro-
ceedings of the 54th Annual Design Automation Conference 2017, pages
1–6, 2017.

[57] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page place-
ment in hybrid memory systems. In Proceedings of the international
conference on Supercomputing, pages 85–95, 2011.

36

http://pmem.io/pmdk
http://pmem.io/pmdk


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Thomas et al.

[58] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.
Using address independent seed encryption and Bonsai Merkle trees
to make secure processors OS- and performance-friendly. In Proc.
International Symposium on Microarchitecture (MICRO), 2007.

[59] Brian Rogers, Chenyu Yan, Siddhartha Chhabra, Milos Prvulovic, and
Yan Solihin. Single-level integrity and confidentiality protection for
distributed shared memory multiprocessors. In Proc. International
Symposium on High Performance Computer Architecture (HPCA), 2008.

[60] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy
Elsasser, Jose A Joao, and Moinuddin K Qureshi. Morphable counters:
Enabling compact integrity trees for low-overhead secure memories.
In Proc. International Symposium on Microarchitecture (MICRO), 2018.

[61] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy
Elsasser, and Moinuddin K Qureshi. Synergy: Rethinking secure-
memory design for error-correcting memories. In Proc. International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[62] Steve Scargall. Programming persistent memory: A comprehensive guide
for developers. Springer Nature, 2020.

[63] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in
c++ applications. In 2015 IEEE Symposium on Security and Privacy,
pages 745–762. IEEE, 2015.

[64] Daniele Sgandurra and Emil Lupu. Evolution of attacks, threat models,
and solutions for virtualized systems. ACM Computing Surveys (CSUR),
48(3):1–38, 2016.

[65] Rakin Muhammad Shadab, Yu Zou, Sanjay Gandham, and Mingjie
Lin. Omt: A run-time adaptive architectural framework for bonsai
merkle tree-based secure authentication with embedded heteroge-
neous memory. In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 191–202. IEEE, 2023.

[66] Weidong Shi and Hsien-Hsin S Lee. Authentication control point and
its implications for secure processor design. In Proc. International
Symposium on Microarchitecture (MICRO), 2006.

[67] Weidong Shi, Hsien-Hsin S Lee, Mrinmoy Ghosh, and Chenghuai Lu.
Architecture support for high speed protection of memory integrity
and confidentiality in multiprocessor systems. In Proc. International
Conference on Parallel Architectures and Compilation Techniques (PACT),
2004.

[68] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Soli-
hin. Proteus: A flexible and fast software supported hardware logging
approach for nvm. In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50 ’17, page 178–190,
New York, NY, USA, 2017. Association for Computing Machinery.

[69] Sergei Skorobogatov. Data remanence in flash memory devices. In
Cryptographic Hardware and Embedded Systems–CHES 2005: 7th In-
ternational Workshop, Edinburgh, UK, August 29–September 1, 2005.
Proceedings 7, pages 339–353. Springer, 2005.

[70] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and
Srinivas Devadas. Efficient memory integrity verification and en-
cryption for secure processors. In Proc. International Symposium on
Microarchitecture (MICRO), 2003.

[71] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk,
and Srinivas Devadas. AEGIS: Architecture for tamper-evident and
tamper-resistant processing. In Proc. International Conference on Su-
percomputing (ICS), 2003.

[72] Meysam Taassori, Rajeev Balasubramonian, Siddhartha Chhabra,
Alaa R Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan
Stutsman. Compact leakage-free support for integrity and reliability.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 735–748. IEEE, 2020.

[73] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. Vault:
Reducing paging overheads in sgx with efficient integrity verification
structures. In Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating
Systems, pages 665–678, 2018.

[74] Kenzo Van Craeynest and Lieven Eeckhout. The multi-program per-
formance model: debunking current practice in multi-core simulation.
In 2011 IEEE International Symposium on Workload Characterization
(IISWC), pages 26–37. IEEE, 2011.

[75] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[76] Bolin Wang. Bo-tree: a dynamic merkle tree for enabling scalable mem-
ories. PhD thesis, University of British Columbia, 2022.

[77] Xueliang Wei, Dan Feng, Wei Tong, Jingning Liu, and Liuqing Ye.
Morlog: Morphable hardware logging for atomic persistence in non-
volatile main memory. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 610–623, 2020.

[78] Yubin Xia, Yutao Liu, and Haibo Chen. Architecture support for guest-
transparent vm protection from untrusted hypervisor and physical
attacks. In Proc. International Symposium on High Performance Com-
puter Architecture (HPCA), 2013.

[79] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and
Yan Solihin. Improving cost, performance, and security of memory
encryption and authentication. Proc. International Symposium on
Computer Architecture (ISCA), 2006.

[80] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure processor for inhibit-
ing software piracy and tampering. In Proc. International Symposium
on Microarchitecture (MICRO), 2003.

[81] Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. En-
abling atomic durability for persistent memory with transiently per-
sistent cpu cache. arXiv preprint arXiv:2210.17377, 2022.

[82] Mao Ye, Clayton Hughes, and Amro Awad. Osiris: A low-cost mecha-
nism to enable restoration of secure non-volatile memories. Techni-
cal report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2018.

[83] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang.
Nbtree: a lock-free pm-friendly persistent b+-tree for eadr-enabled pm
systems. Proceedings of the VLDB Endowment, 15(6):1187–1200, 2022.

[84] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P.
Jouppi. Kiln: Closing the performance gap between systems with
and without persistence support. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46,
pages 421–432, New York, NY, USA, 2013. ACM.

[85] Kazi Abu Zubair and Amro Awad. Anubis: ultra-low overhead and
recovery time for secure non-volatile memories. In Proceedings of the
46th International Symposium on Computer Architecture, pages 157–168,
2019.

37




