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Abstract—Secure memory is a natural solution to hardware
vulnerabilities in memory, but it faces fundamental challenges of
performance and memory overheads. While significant work has
gone into optimizing the protocol for performance, far less work
has gone into optimizing its memory overhead. In this work, we
propose the Baobab Merkle Tree, in which counters are memoized
in an on-chip table. The Baobab Merkle Tree reduces spatial
overhead of a Bonsai Merkle Tree by 2-4X without incurring
performance overhead.

Index Terms—Security, secure memory, encryption, integrity.

I. INTRODUCTION

With the growing use of remote services for computation
on personal data, the issue of providing security and privacy
has gained growing importance. When clients offload sensitive
information to a remote machine, they do it in trust that they
are protected from several attacks orchestrated by an untrusted
OS or cloud administrators [1]. While subject to remote
computation, some level of protection must be employed to
compute on sensitive data such as encryption keys, genetic
information, blockchain transactions, etc.

In most scenarios today, this protection is guaranteed
through secure computation solutions like Intel SGX that
implement secure memory [2]. Secure memory is defined by a
protocol that makes use of a Bonsai Merkle Tree (BMT) [3].
This is a tree of hashes that is built on top of encryption-
counters (to implement counter-mode encryption), and is cou-
pled with data message authentication codes (MACs), which
are secure hashes of data. To authenticate data coming from
outside the trusted boundary (the chip), the data block’s
decryption counter is fetched and the counter’s integrity is
verified against the Bonsai MT by traversing it all the way
up to the root, which is stored on-chip and thus its value
is trusted. In addition, the data’s integrity is verified against
its previously stored MAC. However, secure memory has
two fundamental limitations: (1) the memory authentication
protocol requires additional work on memory fetch, which
limits performance; and (2) secure memory metadata requires
reserving a significant amount of in-memory space, which
limits the amount of data accessible memory. While there has
been significant work towards resolving (1) [4]–[8], there has
been far less work towards resolving (2) [9]–[11].

To alleviate this problem, we propose the Baobab Merkle
Tree. The Baobab Merkle Tree takes advantage of the observa-
tion that many counters in memory have the same value. Given
this observation, we propose an alternative protocol where
encryption counter values are memoized in an on-chip table
and the indices into the memoization table become the leaves
of the integrity tree. As a result, the integrity tree memory
overhead is shrunk to 2–4X less compared to the BMT, as the
index size is 2–4X smaller than the counters. Furthermore,

the Baobab Merkle Tree increases the likelihood of finding a
metadata value in an on-chip metadata cache because a Baobab
Merkle Tree node protects more data than its BMT equivalent.

In this paper, we present the following contributions:
1) We propose the Baobab Merkle Tree, which memoizes

encryption counters in an on-chip table, decreasing the
spatial overhead of the integrity tree by 2− 4X .

2) We define a technique to memoize encryption counters
on-chip.

3) We evaluate the Baobab Merkle Tree in gem5 [12], and
discuss the trade-offs of its design.

II. BACKGROUND

A. Threat Model

We assume a well understood threat model where an at-
tacker has physical access to the device. The attacker can
snoop and/or modify data while it is in transport and stored in
memory. We assume the processor chip is within the trusted
computing base and data on-chip cannot be tampered. Secure
memory ensures that the values that may be corrupted in mem-
ory do not cross the trusted boundary (on-chip components are
trusted). As such, defending against software vulnerabilities,
side channels, and denial of service attacks are out of scope.

B. Secure Memory

Data is encrypted with counter-mode encryption [3], where
each data has a unique counter value that provides spatially and
temporally unique encryption keys. Data integrity is preserved
by storing a keyed hash of that data and counter in memory
(i.e., MAC). The MAC alone is not sufficient to protect the
system against replay attacks, where the attacker replaces the
data, MAC, and encryption counter with a stale value [11].

The Bonsai Merkle Tree (BMT) protects against replay
attacks. The BMT is a tree of hashes in which the root of
the tree is stored on-chip (i.e., is trusted) and it is built on top
of the encryption counters. To verify a counter with the tree,
its hash is computed and compared against the stored value in
the tree, traversing the tree until a trusted value is reached. On-
chip metadata caches can be used to further optimize the BMT.
By caching recently accessed nodes on-chip, the authentication
process is shortened as it can stop as soon as a node is found
in the metadata cache — values in the cache reside on-chip
within the trusted boundary.

C. Secure Memory Optimizations

The notion of using memoization for accelerating the secure
memory protocol is not immediately novel. Recent work [13]
makes a similar observation — many counters have similar
values. However, prior work is concerned with redundant
AES computation on these addresses from a performance
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Fig. 1. Incrementing counters using the elimination column.

rather than redundant storage perspective. Indeed, much of the
attention in the state-of-the-art has been focused on reducing
the performance overheads of secure memory [4]–[8]. On
the spatial optimization side, prior work implements variable
arities in BMTs to reduce the overall size of the integrity tree
itself [9]. This approach suffers from performance degradation.
In contrast, the Baobab Merkle Tree does not impact perfor-
mance. Work in Synergy [14] describes a system by which the
performance to access data MACs is improved by storing these
values in the ECC chips. This design eliminates an additional
memory access to fetch the data MAC from memory—it is
fetched at the same time as the data itself. An alternative
approach is to dynamically adjust the arity of the tree on
demand as it is done in Morphable Counters [10]. However,
the key drawback of this approach is the frequent counter
overflows and subsequent re-encryption that counteracts the
spatial overhead savings with performance overhead.

III. DESIGN

The Baobab Merkle Tree is a modification of the traditional
BMT design that adds a single layer of indirection. The tree,
instead of protecting each data block’s counter, now protects
the block’s associated index into a memoized counter table.
The table, containing all counter values, is stored within the
on-chip memory controller. The table is divided into rows (i.e.,
entries), and each row contains a group of encryption counters
(i.e., cells). Each data block is assigned to a fixed memoization
table row, and its associated index (from the tree) indicates
the column of its current counter value. The total number of
cells in the memoization table is significantly smaller than
the number of data blocks—the indices allow blocks to share
counter values.

A. The Memoization Table

The memoization table is a fixed size buffer stored on-chip.
This buffer is composed of r memoization table entries, and
each entry has c cells. The data stored in each cell reflects a
counter value that can be used for counter-mode encryption.

To reduce the likelihood of overflow and maximize utiliza-
tion of space, each counter in the memoization table occupies
(64 − n) bits, which essentially resembles the traditional
major counter in the split-counter design. When incrementing
a counter value (described in Sec. III-C), the Baobab system
needs to consider the number of blocks currently using said
counter value. Thus, the proposed design includes a reference
counter to track the number of blocks actively using the
encryption counter value. Only the 64− n bit counter is used
for encryption/decryption, not the reference counter.

Fig. 2. Memory assignment from address to memoization table row.

The remaining n bits of the column values are used to keep
track of the number of blocks currently using the counter.
These bits represent a “sticky counter” [15], commonly used
for reference counting. For example, suppose we assume a 60
bit encryption counter and 4 reference counter bits. The 4 bits
are incremented every time a new block uses the counter value
and it is decremented when a block changes to a new counter
value. When the 4 bits reach their maximum value of 15 (i.e.,
0xf) the reference counter reaches the “non-decrement state.”
and can only be reset by finding all blocks pointing to it and
re-encrypting them with a new counter value.

B. Baobab Merkle Tree

The Baobab Merkle Tree is a tree of indices rather than
a tree of counters. The leaves of the Baobab Merkle Tree
are composed of n indices and each value is composed of
log2c bits, where c is the number of cells per memoization
table entry. The physical address of the data determines where
the cell index is stored, which is similar to how encryption
counters are found in the traditional BMT design. Once the
leaf node storing the index is accessed, the value stored
determines the cell in the memoization table entry with the
counter to be used for en/decryption.

C. Incrementing Counters

Incrementing a counter in the memoization table depends on
its reference count and the state of the other counters within its
entry. In particular, there are four types of increment scenarios
in the memoization table: (1) in-place increment (2) next-cell
increment, (3) free-cell increment, and (4) blocking increment.
We use Figure 1 to demonstrate each case.

In-place increment occurs when the block that requires
incrementing the counter is the only block using that cell
(Figure 1, scenario 1). If the current cell holds the largest
counter value in the entry or if its counter value is at least two
less than the next highest counter value (to avoid duplication of
counter values), then it is safe to increment the current counter
value in the column. The corresponding index in the Baobab
Merkle Tree does not need to change. As such, no secure
memory metadata access to main memory is required because
leaves in the Baobab Merkle Tree refer to indices, which in
this case do not change. This is a performance savings versus
baseline BMT implementations.

Next-cell increment (scenario 2) occurs when the data is
mapped to a cell with a reference counter greater than one
and where there is another cell in the entry with a higher
encryption counter. It also occurs when a cell has a reference



3

counter of one and another cell in the entry has an encryption
counter one more than the current encryption counter to avoid
duplication of counter values. In this case, the data block needs
to now use the index of the next greatest encryption counter
in the row. As such, this new index is stored in the Baobab
Merkle Tree, whose state has changed requiring an update to
the tree. In terms of memory operations, this case exhibits
similar behavior to a standard write in a BMT.

Free-cell increment (scenario 3) occurs when data uses the
cell with the highest encryption counter which is not held
exclusively, but another cell in the entry has a reference count
of zero (i.e., a free cell). In this case, the increment uses the
free cell, filling it with the value of the incremented prior
encryption counter.

Blocking increment (scenario 4) occurs when the data uses
the cell with the highest encryption counter with a reference
counter greater than one, and the entry has no free cells
available to reuse. For this case, the system reserves the last
column of the memoization table entry as the “elimination
column.” Suppose, after some time, the entry takes the state
of the upper row in Fig. 1 scenario 4. In order to increment
from 22 (i.e., next cell increment), the elimination column is
filled. This locks further authentications to the entry to avoid
conflicts. Then, in the lower row, unblocking is achieved by
scanning for the least referenced cell in the entry and re-
encrypting those data with the new encryption counter value
created in the elimination column (i.e., re-encrypted with 23).
The encryption counter from the elimination column then
replaces the cell with the fewest references, and that data
is re-encrypted with the new counter value. To find which
data need to be re-encrypted, we need to perform a reverse
mapping from counters to data to check which data points
to that column and needs to be re-encrypted. To ensure that
there is adequate hardware, while re-encryption is happening
we block all authentications that require this memoization row.
D. Assigning Blocks to Memoization Entries

The assignment of data to memoization table entries is an
important feature of the Baobab Merkle Tree. To improve
effectiveness, assignment of data to an entry works from a
heuristic to increase the likelihood of in-place increment and
decrease the likelihood of needing a blocking increment.

We work from the observation that, like virtual memory,
physical memory exhibits spatial locality (especially within
a page). As such, contiguous data blocks (64 bytes) within a
page should be mapped to different memoization table entries.
By doing so, the frequently used data within a page will
have its counters increase monotonically in-place in different
memoization table entries. If no physical locality is observed,
blocks will need to increment counters at similar but slightly
different rates, which will occupy more cells per entry. We
“stripe” the memory address in their mapping to memoization
table entry, as per Figure 2.
E. Security Implications

In order to uphold secure memory semantics, Bonsai MTs
protect the integrity of encryption counters and use data MACs
to ensure that data has not been corrupted [11]. The intuition is
that only the untampered encryption counter can produce the

decryption key that decrypts the data to plaintext that matches
the MAC. In the Baobab Merkle Tree, counters cannot be
tampered as they are stored on-chip. Any attempts to tamper
or replay the pointer will be detected by the integrity tree in
the exact same way that the BMT would detect tampering or
replaying of encryption counters in memory.

IV. EVALUATION

A. Methodology

We implement the Baobab Merkle Tree as an extension
to gem5 [12], a cycle-accurate full system simulator. We
configure a four-core simulation where each core has private
L1 and L2 caches, with a shared 8MB L3 cache. The integrity
tree is 8-ary, and the “leaf” arity is n-ary (configuration
dependent, but either 128-ary or 256-ary, described below).
We use a 32kB metadata cache and a 224kB memoization
table. Each cell in the table is 8-bytes, with 58 bits belonging
to the encryption counter and 6 bits acting as the sticky
reference counter. We run two baseline approaches, one with
a comparable metadata cache size to the Baobab Merkle Tree
(i.e., 32kB metadata cache) and one with a comparable on-chip
resource size (i.e., 256kB metadata cache). We use SimPoint
to determine the region of interest in each benchmark, and
run 500 million instructions from this region of interest. In
order to avoid inaccuracies in modeling due to cold-boot, we
prefill the memoization table state. The prefilled contents are
collected from memory traces of each of the SPEC 2017 CPU
benchmarks [16] run back-to-back while modeling what the
table state would be offline from the simulation. We then run
our Baobab Merkle Tree implementation using the SPEC 2017
CPU benchmarks and the Belgian street network workloads
from the GAP benchmark suite [17].
B. Spatial Overhead

The spatial overhead of Merkle Trees in secure memory
scales proportionally to the overall memory size. Table I shows
the amount of reserved memory space required to store the
integrity tree across configurations, showing both a Baobab
and traditional Bonsai Merkle Tree. The fact that we can
protect and authenticate twice as much data per leaf in the
Baobab Merkle Tree versus the Bonsai means that the Baobab
Merkle Tree requires half as much space in memory as the
Bonsai MT.

The Baobab Merkle Tree size strictly depends on the num-
ber of cells within a memoization table entry. If, for example,
we store 4 cells per entry, then only 2 bits are required to
track the index into the entry, and thus the Baobab Merkle
Tree has a spatial reduction of 4X rather than 2X (256-ary
versus 128-ary leaf level). However, we opted for 16 cells
per entry in our approach in order to limit the number of
blocking cases, requiring 4 bits to index into the memoization
entry. Blocking cases can be done in parallel with accesses
to different memoization table entries, so they do not impact
performance, but they should still be avoided as much as
possible to reduce the bandwidth requirement to service these
requests.
C. Runtime Evaluation

Figure 3 (shapes) shows that, on average, the Baobab
Merkle Tree implementation does not impact performance; it
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Fig. 3. Evaluation across SPEC CPU 2017 and GAP benchmark suites. (Shapes) Execution overhead of the benchmark normalized to baseline secure memory
protocol with 32kB metadata cache. (Bars) Metadata cache misses per LLC miss. In both metrics, lower is better.

has an average performance benefit of less than two percent.
That is, any differences in performance cannot be attributed to
anything other than noise. As per [13], the latency to update a
memoization table entry is 2ns, which is negligible relative to
the memory access latency. For this reason, the overhead due
to indirection incurred by the Baobab Merkle Tree is similarly
negligible. While there is some additional information being
tracked in the memoized data itself (i.e., the sticky reference
counters), updating these values can be done at the same cycle
and do not incur additional execution overheads. Furthermore,
we find that the metadata cache hit rates are very high in the
baseline approaches. Given these factors, the Baobab Merkle
Tree has no significant overhead relative to the baseline secure
memory model.

The Baobab Merkle Tree has a significant reduction in
metadata cache misses relative to the Bonsai MT baseline,
even though more on-chip space is used by the metadata cache.
Figure 3 (bars) shows the number of overall metadata cache
misses per last-level cache miss, comparing Baobab against
the baseline secure memory systems with different metadata
cache sizes. In every case, Baobab makes better use of the
metadata cache capacity, resulting in a reduction in metadata
cache misses.

V. CONCLUSION

In this paper we present the Baobab Merkle Tree. We show
that, because indices require fewer bits than the counters them-
selves, the Baobab Merkle Tree reduces the spatial overhead of
the integrity tree by 2-4X. Furthermore, by making data more
compact, the Baobab Merkle Tree reduces metadata cache
misses, which can be a promising approach for metadata cache
dependent secure memory protocols. The Baobab Merkle Tree
is a promising direction for future optimizations in both
performance and spatial overheads of secure memory.
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