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Abstract—High-performance simulations and paral-
lel frameworks often rely on highly scalable, concurrent
data structures for system scalability. With an in-
creased availability of NUMA architectures, we present
a technique to promote NUMA-aware data parallelism
inside a concurrent data structure, bringing significant
quantitative and qualitative improvements on NUMA
locality, as well as reduced contention for synchro-
nized memory accesses. Our architecture is based on
a data-partitioned, concurrent skip graph indexed by
thread-local sequential maps. We implemented maps
and relaxed priority queues using such technique. Maps
show up to 6x higher CAS locality, up to a 68.6%
reduction on the number of remote CAS operations,
and an increase from 88.3% to 99% on the CAS success
rate compared to a control implementation (subject
to the same optimizations, and implementation prac-
tices). Remote memory accesses are not only reduced
in number, but the larger the NUMA distance between
threads, the larger the reduction is. Relaxed priority
queues implemented using our technique show similar
scalability improvements, with provable reduction in
contention and decrease in relaxation in one of our
implementations.

Index Terms—NUMA, concurrent data structures,
skip graphs, locality

I. INTRODUCTION

The increasing availability of computing cores on shared
memory machines makes concurrent data structure design
a critical factor for the design of high-performance appli-
cations or parallel systems. Non-blocking [1], linearizable
([2], a concept analogous to “serializable”) structures are
particularly appealing, since they can effectively replace
sequential or blocking (lock-based) structures without
compromising the semantics expected by users (systems
designers). However, the design landscape for concurrent
structures is changing: NUMA architectures emerge as a
set of computing/memory “nodes” linked by an intercon-
nect, making memory accesses within the same NUMA
node cheaper than those made across different ones.

Under the usual assumption that threads are pinned
to cores, we adopt the definition of local memory ac-
cesses as those operating in memory initially allocated
by the current thread (under first-touch NUMA policy),
and remote accesses as those accesses that are non-local.
Note that our definitions are conservative, as data initially
allocated by two different threads could indeed be located
within the same NUMA node. Our goal is to increase
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NUMA locality — the ratio of local over total memory
accesses, and research is very active in this area. Some
approaches [3], [4], [5] focus on redesigning data structures
with NUMA awareness, which is effective as we have
full ability to exploit the structure’s internal features
for the task. Unfortunately, complete redesigns can pose
significant development and research efforts, unsuitable for
non-specialists. On the other hand, approaches such as [6]
allow sequential structures to be “plugged-in” and bene-
fit from NUMA-aware concurrency, based on replicating
the dataset among nodes, batching local operations, and
coordinating batches as to minimize inter-node traffic.

A critical goal in concurrent data structure design is
the reduction of contention for synchronized memory ac-
cesses, characterized when two or more threads operate
concurrently on nearby locations in memory (e.g., same
cache line). Synchronized operations introduce memory
fences in the cache-coherence protocol, and optionally
provide enriched semantics, such as get_and_increment ()
(atomic increment) or compare_and_swap() (CAS) (condi-
tional atomic exchange), so they are critical for lock-free
data structure design. However, they also introduce high
invalidation traffic in the cache-coherence system, partic-
ularly under contention. With NUMA, it is even more
critical that contention is reduced, as such traffic happens
across different memory domains, resulting in expensive
access costs. Reducing contention can be attained by pro-
moting internal data parallelism for synchronized memory
accesses, and our technique simultaneously promotes a
reduction on remote memory accesses on NUMA.

Our contributions. We present a technique to pro-
mote NUMA-aware data parallelism inside the concur-
rent data structure, bringing significant quantitative and
qualitative improvements on NUMA locality, as well as
reduced contention for synchronized memory accesses. Our
design is based on integrating thread-local sequential maps
with skip graphs ([7], [8], described also in Sec. II), while
performing a data partitioning scheme over the skip graphs
for increased NUMA locality. By “qualitative” increase in
NUMA locality, we mean that remote memory accesses are
not only reduced in number, but the larger the distance
between threads in the system, the larger the reduction
is (Sec. V). At a high level, skip graphs can be viewed as
multiple skip lists [9] that overlap, so we partition sub-
components of skip graphs among threads as to promote
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higher NUMA locality and reduced contention (increased
data parallelism). We design internal algorithms to take
full advantage of the partitioned dataset in order to pro-
mote this goal. Note that, as originally defined, skip graphs
are expensive data structures, so our technique is made
viable in practice by incorporating existing thread-local
indexing and well-documented laziness principles [5], [10]
into our design. As a proof-of-concept, we implemented
maps and relaxed priority queues ([11], [12], [13], [14]).
Maps have been implemented with and without using
laziness techniques, but always using thread-local indexing
similarly to [5]. We are competitive with state-of-the-art
maps [5], [10], [15]: in some cases, we see 80% increased
performance, while in others, we see similar performance
to the faster running implementation. As part of our
NUMA locality assessment, we observe a 6x higher CAS
locality, a 68.6% reduction on the number of remote CAS
operations, and an increase from 88.3% to 99% of CAS
success rate when using a lazy skip graph map implemen-
tation, as compared to our control — a skip list subject
to the same codebase, optimizations, and implementa-
tion practices. Memory access patterns are visualized on
Sec. V, showing evident qualitative improvement.

We also contribute by implementing relazed priority
queues [11], [12], [13], [14], which return an element among
the k smallest elements in a set, rather than the absolute
smallest. We not only use our data partitioning technique,
which brings increased NUMA locality and reduced con-
tention, but we consider a couple of algorithmic varia-
tions that further harness key structural features of the
skip graph. Additionally, we overview a formal argument
(proved thoroughly in [16]) indicating that one of our two
priority queue protocols is subject to smaller contention
and it is also slightly less relaxed (that is, the removed
elements are closer to the minimum element as defined in
a strict priority queue). We proceed with an overview and
background in Sec. II, and related work on Sec. III. Design
and implementation are further discussed in Sec. IV, with
evaluation in Sec. V and conclusion in Sec. VI.

II. ARCHITECTURE OVERVIEW AND BACKGROUND

In this section, we start with an architectural overview,
then we discuss skip graphs in more detail. We discuss
our NUMA-aware optimizations (our data partitioning
scheme), and provide a general description of an imple-
mentation variant of our mechanism. Section IV com-
plements our discussion with further contributions more
related to implementation rather than architecture.

General Architecture. Our overall architecture con-
sists of an underlying skip graph [7], called a shared
structure, and multiple thread-local, sequential, navigable
maps called local structures, one per thread. The local
structures allow insertions, removals, and contains op-
erations to “jump” to positions in the shared structure
near to where they will complete. The “jump” is done
on thread-local memory, which contributes to reducing
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remote memory accesses since we avoid traversing long
paths in the shared structure (distributed across multiple
NUMA memory banks). Once in the shared structure, our
data partitioning scheme over the skip graph promotes
a further reduction in remote memory accesses due to
our partitioning mechanism. We call our overall structure
layered structure due to this general architecture.

We say nodes store elements, although we use these
terms interchangeably. We further use the terms local
nodes or shared nodes to refer to those nodes belonging to a
local structure or to the shared structure, respectively. We
now describe how the local and shared structures interact.
When a thread inserts an element e, it first creates a
shared node s in the skip graph, and then the thread’s
local structure will map e — s. When a thread removes
an element e, it first (i) logically deletes the shared node
s in the skip graph; which will cause the next two events,
in arbitrary order: (ii-a) a “lazy” physical removal is done
by traversing threads in the shared structure and (ii-b) a
“lazy” physical removal of the local structure entry e — s
is done by the thread that originally inserted the element.

Skip Graphs. Fig. 1 shows a skip graph, which per-
forms the role of our shared structure. A skip graph is
composed of many singly-linked lists across multiple levels
0...MazLevel. Each level i has exactly 2¢ linked lists, and
partitions the nodes in level i—1 (for ¢ > 0) in two sublists.
In the level-0 list (called A), all nodes are present. The two
level-1 lists, 0 and 1, partition the level-0 list, and so on.
In the original definition of skip graphs, aimed at peer-to-
peer distributed applications, the specific partitioning is
probabilistic. In this paper, we have a partitioning scheme
that will allocate nodes as to maximize data locality in the
operations in our overall data structure (we describe our
partitioning scheme below).

Skip lists [9] are similar to skip graphs, but the former
contain one linked list per level, and the later 2¢ lists at
level . In a skip list, all elements belong to level 0, 1/2 of
the elements at level 1, 1/4 of the elements at level 2, and
so on. Hence, a skip graph is a collection of overlapping
skip lists: in Fig. 1, if we select exactly one linked list
per level, we obtain a skip list. In Fig. 1, one skip list
is highlighted, which we denote (X,0,01) after the linked
lists that must be chosen to define it, from the bottom
level to the highest level. This way, 39 is in the skip list
denoted by (A, 1,10), and 85 is in the skip list denoted by
(A, 0,00). Skip graph searches are skip list searches: start
from a node’s top level, and follow high-level pointers as
far as possible before moving down levels. For example,
from 16 we reach 63 by following the path 16 — 39, |, 39
— 45,45 — 62, |, 62 — 63. Note we only follow references
from the skip list 16 (our starting point) belongs to in its
top level: (A,1,10). We refer to any skip list within the
skip graph as shared skip list, and any of the individual
linked lists within the skip graph as a shared linked list.

Data Partitioning. Even though the skip graph is
shared by all threads, we limit where each thread operates
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Fig. 1: A skip graph can be seen as a set of skip lists sharing their levels (one of them is highlighted). It contains 2°
linked lists at each level i. With T' threads, we have 7'/ 2¢ of them working in each level-i linked list, separated by
NUMA proximity, which increases data access parallelism, reduces contention, and increases NUMA locality.

on it, configuring a partition scheme. First, we establish
that the maximum level of the skip graph is MaxLevel =
[log(T)] — 1, where T denotes the number of threads in
the system (named {Ty...Tp_1}). While such a “low”
MaxLevel does not guarantee logarithmic searches by
itself, our local structures perform the role of the missing
higher levels as they “jump” to positions in the shared
structure nearby where we expect operations to complete.
We then divide the skip graph lists in the following way:
(i) each thread T; has a sequence of MaxLevel bits called
a membership vector, denoted by M;; (ii) T; can only
operate on the skip list characterized by the suffixes of
M;. That skip list is called the associated skip list of
T;, denoted L;. For example, consider Fig. 1. Because
MaxLevel 2, T;’s membership vector M; is a 2-bit
string, say 01. Hence, T; will always insert, remove, and
search by following paths of the skip list L; = (), 0,01).
Note that since MaxLevel = [log(T')] — 1, each top-level
linked list is shared by 2 threads, and any arbitrary level-
i list is operated by at most T/2! threads. An effective
data partitioning is induced as we distribute threads over
the skip graph as above, as we assume threads operate
in different NUMA domains, and allocate memory within
their domain. Furthermore, we have the opportunity to
increase NUMA locality by having threads pinned to
“closer” hardware to share more lists in the skip graph.
We do that by generating membership vectors according
to physical NUMA features of the machine. For example,
consider a system with 7" = 16 threads (MaxLevel = 3)
and 2 NUMA nodes, each with 2 CPUs, each of those with
2 cores, each of those with 2 hyperthreads. We will give the
same membership vector for any two threads running on
hyperthreads of the same core; membership vectors with
a common 2-bit suffix if threads run on different cores,
and with a common 1-bit suffix if threads run on different
CPUs; and finally membership vectors with no common
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suffix if threads run on different NUMA nodes. Now, on
the level-3 linked lists, any contention relates to core-local
data (and hopefully located on the core’s closest cache); on
the level-2 linked lists, any contention relates to CPU-local
data; on the level-1 lists, any contention relates to NUMA-
local data. Not only we expect less contention in upper-
level lists, because they are shared among less threads,
but we expect this contention to relate to more local data.
Further, any search that traverses the skip graph, as we
discussed, is a skip list search. Hence, we first traverse
core-local data, and if we go down a level, the target data
cannot be located in the same core. Similarly, we then
traverse CPU-local data, then NUMA-local data, and if
we ever go down a level, the target data must be found
remotely, where local/remote depend on the level in ques-
tion. If we ever leave, say, a NUMA node, we never come
back to it. The same applies to CPU-local data, or core-
local data, and this happens as a direct consequence
of our data partitioning mechanism, and our choice
of data structure. We have an automated mechanism
that generates membership vectors based on inspecting
the system’s CPU/socket/domain structure.

Alternative shared structure. In order to further
explore benefits and tradeoffs of skip graphs, we also
created and tested a second shared structure, called a
sparse skip graph. This structure is a skip graph where
elements are made present in level i of any shared skip
list with expectation 1/2¢ just like in a regular skip
list. The combination of skip graph partitioning and skip
list refinement makes elements be present in level ¢ of a
particular linked list with expectation 1/4%. For instance,
in Fig. 1, each of the level-1 lists “0” and “1” would
partition only 50% of the elements of “\”, which would
be selected at 50% chance independently. So, “0” and
“1” would each have about 25% of the elements in “\”.
Similarly, the level-2 lists “00” and “01” would partition
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only 50% of the elements of “0”, each selected at 50%
chance, independently. So, lists “00” and “01” would each
have about 6.25% of the elements in “\”. With sparse skip
graphs, only elements that reach the top level are added
to the local structures. This is crucial because the local
structures, besides pointing to shared nodes nearby the
target destinations, should also point to maximum-level
nodes from which we can start an efficient search. Hence,
using sparse skip graphs gives two immediate advantages:
(i) the local structures are smaller; and (ii) the insertion
and removal in the shared structure requires changes in
less than MaxLevel levels. The tradeoff is that the starting
point given by the local structures is not as close to the
requested element compared to regular skip graphs.

II1I. RELATED WORK

Skip Lists and Skip Graphs. Skip lists first appeared
in [17], although [18], [19], [20] were most widely discussed
in the literature [21]. Skip lists have also been used to
implement priority queues, either exact [22], [23], [24] or
with a relaxed definition [11], [12], [13], [14]. SkipNets [§]
are similar (if not identical) to skip graphs, proposed rela-
tively at the same time. We consider those equivalent, and
equally applicable. Skip graph variations, such as in [25],
typically address issues related to distributed systems,
such as node size; we are aware of a single concurrent
implementation in shared memory in [26], although it is
lock-based, in contrast with both of our lock-free variants.
Our implementation relies heavily on laziness, as we post-
pone much of the internal work until they are absolutely
needed. The “No Hotspot” skip list [10] uses similar lazy
principles, albeit with a different protocol. The “Rotating”
skip list has a novel construction (“wheels”) meant to
improve cache efficiency and locality, and also constitutes
a modern, state-of-the-art implementation.

NUMA awareness and layered design. The work
presented in [27] gives a systematic approach to provide
NUMA-awareness to locks. Tailor-made data structures
for NUMA systems, such as [3], [4] have also been de-
veloped, using (now) standard techniques such as elimi-
nation [28] and delegation [29]. We think that “blackbox”
approaches, such as in [6], are interesting as they relieve
systems programmers from “customizing” their data struc-
tures for NUMA, a notoriously complicated task for non-
specialists (and specialists alike [21]). NUMASK [5] is an
interesting skip list that uses its higher levels as a hier-
archical “index” to the bottom-level list, which stores the
dataset. In our case, the dataset is located in a structure of
its own, a multi-level skip graph. This allows for our data
partitioning mechanism, designed to (i) reduce non-local
NUMA traffic, and particularly avoid traversals that nav-
igate back and forth across NUMA nodes; and (ii) reduce
contention by creating areas within the shared structure
where only subsets of threads operate. Our thread-local
indexing, similarly, is more detached from the dataset, and
could be implemented with any sequential, navigable map.
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In our implementation, for example, our map is actually
a combination of a search tree and a hash table. Finally,
our indexes are not replicated, but partitioned. Even with
our optional load balancing mechanism in place, threads
donate nodes but do not replicate their indexing. Apart
from differences of granularity and function, the idea of
separating thread-local views and shared views has been
seen before in [30], although their approach is more akin
to combining, as they eventually merge thread-local views
into the shared structure from time to time.

A brief announcement (i.e. not a full paper) related
to this work was published in [31], and substantial new
material has been developed since then, including: lazy
skip graphs (p. 4), load balancing (p. 5), the commission
period policy (p. 5), relaxed priority queue algorithms (p.
5) and their analysis (p. 6). This paper is self-contained
and includes all the new material since the brief announce-
ment in [31].

IV. IMPLEMENTATION DETAILS

Section II gives a design overview, and this section gives
more insight into implementation and correctness, and
discusses optimizations related to laziness and physical
removal. We will discuss first the implementation of “map”
abstract data types (ADTs), and later highlight the differ-
ences in the relaxed priority queue protocols.

Laziness. State-of-the-art concurrent data structures
rely heavily on postponing internal work until they be-
come absolutely needed, in the hope that they become
unnecessary. We implemented a lazy variant of our layered
structure, employing this principle as: (i) The insertion
of shared nodes in the skip graph is done in the level
0 first, and we only complete the insertion at upper
levels when the node in question is requested to start a
search operation. (ii) Removals are performed logically by
“invalidating” a shared node, and nodes are marked for
physical removal only when the threads that originally
inserted those nodes find them invalidated after a minimal
commission period for which they exist in the structure.
As the physical removal of a node is expensive, the com-
mission period is intended to have this operation done
only when necessary. Experimentally (Sec. V), we found
that a commission period proportional to the number
of threads, say 350000 - T' cycles, for instance, performs
very well under high-contention without introducing too
much overhead in low-contention (in the latter, a longer
commission period could leave the data structure much
larger at times). (iii) We implemented an optimization
that removes chains of marked shared nodes with a single
CAS operation, and, related to laziness, we do that only
when substituting a chain of marked shared nodes with an
inserting node. Although this protocol has the potential
to leave too many marked nodes in the data structure,
we verified experimentally that the number of traversed
shared nodes per operation is less than in a skip list up to
96 threads.
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Physical removal. We now expand our discussion of
valid and invalid nodes to a more formal definition. Each
node has a wvalid bit and a marked bit in each successor
reference in the skip graph. When a node’s level-0 reference
marked (resp. valid) bit is set, we say the shared node
is marked (resp. invalid). The concepts of unmarked and
valid are obvious. In the non-lazy version, we do not use
the valid bit, and in that case an unmarked shared node
indicates presence in the abstract key set, while a marked
shared node indicates a logically deleted node.

In the lazy version, an unmarked, valid node indicates
presence in the abstract set; an unmarked, invalid node
indicates absence from the abstract set (logically deleted),
but also that the process of physically unlinking the node
has not started; a marked node can only be invalid, and
in that case the process of physically unlinking is ready
to start. Each shared node s has a field s.allocTimestamp,
set at shared node construction, used to calculate when
a node’s commission period has elapsed, thus making it
a candidate for physical removal (see the discussion on
laziness, above). The removal process happens in distinct
phases. (i) A thread that traverses the data structure will
mark a shared node with an expired commission period
only if such node has been inserted by the thread in
question (recall that “marking” nodes means marking its
successor reference at level 0). (ii) When threads remove
marked nodes from their local structures, they also mark
upper-level successor references in order to promote phys-
ical removal of the shared node in the upper levels as
well. As in many cases logically deleted nodes have not
been inserted in upper levels, this additional reference
marking is not always necessary or complete. (iii) Finally,
traversing threads perform the physical cleanup using the
relink optimization discussed below. Note that (i) and (ii)
are synchronization operations done in local memory, and
we consider this protocol for maximal locality as one of
our implementation-related contributions.

In textbook skip lists [21], we indicate willingness to
physically remove a node s by marking its s.nextl[i]
references for all levels i...0 the node belongs to. Within
a level i, searches performed on behalf of insertions and
removals physically remove nodes with marked nextl[i]
references by employing a single CAS per node. In con-
trast, both our skip lists or skip graphs remove sequences
of marked references with a single CAS per sequence,
a trivial optimization that we we denote by relink opti-
mization. The correctness of this protocol is trivial when
we consider that marked references are immutable. Our
technical report[16] describes the algorithms in detail and
discusses how they are lock-free and linearizable.

Unbalanced workloads. We have an optional mecha-
nism for handling unbalanced workloads, which addresses
the following scenarios: (i) Some threads may only insert,
while others only perform removals/contains. (ii) Distinct
groups of threads may insert in distinct partitions of the
element space. Both scenarios are problematic because
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threads do not necessarily find good starting points for
their search operations if their local structures are empty
or skewed towards a partition of the element space. Our
load-balancing mechanism is based on having threads
donate a fraction of their nodes inserted in the shared
structure so they are added to local structures of other
threads. A background thread takes into account the
number of inserted elements announced by every worker
thread, and, based on those numbers, continuously indi-
cates to each worker thread the fraction of inserted nodes
that are requested for donation. The worker threads place
such fraction of inserted nodes into donation queues (one
per worker thread), which are collected by the background
thread and distributed uniformly among all other worker
threads. Threads inspect receiving queues for incoming
nodes, and add them into their local structures. Specif-
ically, if a worker thread 7; announces the insertion of
I; elements out of a total of Iy = Z{O§i<T} I;, define
gi = Li/I7. If ¢; < 1/T, then T; donates the fraction ¢;
of its elements; otherwise, it donates (T'q; +¢; — 1)/T'q; of
them. Donated nodes have been inserted in their bottom-
level by a thread T;, while they might be inserted in upper
levels by a thread Tj,j # i. We are currently working
on delegating the creation of upper levels to the original
thread T;, avoiding to cross NUMA nodes when building
up those levels. On lazy implementations, with levels built
only when needed, the impact of this problem is reduced.

Priority Queues. Our layered structure can implement
priority queue ADTs (and relaxed versions of it) in addi-
tion to sets/maps. Similarly to [23], [24], [22], we rely on
marking elements in the bottom level of the (now) skip
graph in order to logically delete elements. We consider
two relazed priority queue approaches [11], [12], [13]: (i)
the use of the spraying technique of [14] over skip graphs;
and (ii) a custom protocol that traverses the skip graph
deterministically, marking elements along this traversal.
We consider (ii) as one of the contributions of this paper.

Regarding option (i), the main idea of [14] is to disperse
threads over the skip list bottom level through a random
walk called a spray. If we apply the technique to a skip
graph, each thread T; would navigate only through its as-
sociated skip list L;. We see several advantages of perform-
ing spray operations over skip graphs rather than skip lists.
Our partitioning scheme will still incur in better memory
locality and reduced contention, as discussed before. On
the other hand, we show that spraying over skip graphs
has a slightly bigger removal range (same asymptotically,
but higher nevertheless, proved in [16]). Related to option
(ii), we implement a deterministic traversal in the skip
graph, marking elements along the way. Informally, a
thread T; starts at the highest level of its associated skip
list, traverses marked nodes, and attempts to mark at the
current position. If the attempt succeeds, a node has been
logically deleted, otherwise the thread moves down a level,
traverses marked nodes, and proceeds similarly. At level 0,
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two mark attempts are tried, and upon failing the second
one, the process is restarted [16]. We prove on [16] that
the number of CAS operations required to logically delete
a sequence of T nodes in our deterministic protocol is
2T (so each node is subject to contention by 2 threads
in expectation). In either approach, our layered structure
gives the opportunity to perform physical cleanup on local
structures using combining [32], [33]: as we always remove
a whole prefiz of the local structure containing logically
deleted nodes, many nodes could be removed at once, at
cost comparable to a single removal.

PQ Formal Arguments. We overview our formal
arguments that quantify (A) the removal range of spraying
operations in skip lists and skip graphs; and (B) the
contention anticipated for approaches (i) and (ii) discussed
above, over skip graphs. In [16] we provide the complete
formal arguments for the theorems below. We first calcu-
late the removal range of spray operations in skip graphs:

Theorem 1 ([16]). For each SPRAY(log T — 1,10g T, 1);, for
any list j in the mazximum level of a perfect skip graph, the

position of the node on which the operation lands is at most
L 4logT (T —1)—1.

Compared to spraying over skip lists, the larger bound is
related to the fact that skip graphs have multiple starting
points offset from each other. We show, however, that the
probability of a skip graph spray to reach an arbitrary
node in the bottom level is < 1/T"

Theorem 2 ([16]). Fiz H = logT — 1, L = logT, and
D = 1. Then for any position x, the probability that the
spray operation lands on x is < %

In [16], we prove that one of our relaxed priority queue
algorithms (which we call SGMARK), designed precisely
in order to exploit the central structural features of the
skip graph, can remove elements from a range of T el-
ements with proven contention being exactly 2 for any
number of threads T

Theorem 3 ([16]). SGMARK on a perfect skip graph ensures
that exactly T = 2™ nodes are marked. Furthermore, 2
threads contend for each of the first T —1 consecutive nodes,
and 1 thread tries to CAS (logically delete) the last node.

V. EVALUATION

We performed experiments in a system with 2 Intel
Xeon Platinum 8275CL CPUs, each with 24 cores running
at 3.0GHz (96 hardware threads total). The system has
192GB of memory and two NUMA nodes. The NUMA-
distance tool numactl --hardware reports intra-node dis-
tances of 10 and inter-node distances of 21 (not an issue
here as we demonstrate NUMA locality using software in-
strumentation). The system runs Ubuntu Linux 18.04 LTS
with kernel 4.15.0. We compile tests with g++ -std=c++11
-03 -m64 -fno-strict-aliasing.

Experiment setup. We report the total number of
operations per millisecond achieved in trials having from
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2 up to 96 threads. Each trial is an average of 5 runs
of 10s each, and follows exactly the testing procedure
of Synchrobench [34] with the flag -f 1. This flag in-
dicates that the testing procedure tries to match each
trial’s requested percent of update operations (inserted
and remove) as much as possible, and that only successful
inserts or removals count as update operations. The testing
procedure, as well as random number generation, are
identical to Synchrobench. We run a read-heavy (RH) load,
with a requested 20% of update operations, a write-heavy
(WH) load, with a requested 50% of update operations,
and a priority queue (PQ) load, with 50% of insertions
and 50% of removals, all distributed uniformly at random
across all threads (except for our load-balancing tests). If
X% of operations correspond to successful updates! in a
given experiment, we say we had X% of effective updates,
and we report that percentage in each associated graphic
caption. Our experiments are defined to be high contention
(HC) when the key space is 28, medium contention (MC)
when it is 2!, and low contention (LC) when it is 2!7.
The structures are preloaded with 20% of their maximum
capacity before any measurements, except for the LC tests,
which are preloaded with 2.5%. LC tests and analysis
are presented in [16]; here we will focus on WH-HC and
WH-MC tests. Threads are pinned to each CPU, and
we fill a socket before adding threads to another socket.
We allocate memory with libnuma, in chunks capable of
holding 2%° objects, in order to amortize the expensive
cost of numa_alloc_local(). Membership vectors are
generated as described in Sec. IT, and we obtain data from
/proc/cpuinfo on Linux to automatically number and
pin threads.

1 - Performance results. Figures 2 and 3 show
write-heavy (WH) results for the HC and MC con-
tention scenarios. Low-contention results (LC) and read-
heavy (RH) results are presented in [16]. In our graphs,
layered_map_{sg,ssg} refers to using C++ std::map
in conjunction with the hash [35] as local structures,
respectively over regular or sparse skip graphs (p. 4) as
shared structures; lazy_layered_sg is the lazy variant
of layered_map_sg; rotating is [15], nohotspot is [10],
and numask is [5] as found in Synchrobench’s GitHub
(mid August 2019). For the purpose of isolating individual
design components in our analysis, we also developed
as control: a locked skip list; a concurrent skip list
with the same codebase and practices as our skip graph
code, including our relink optimization (p. 5); a skip
graph without layering; and finally our layered design
(i) over a linked list (layered_map_11) and (ii) over a
skip list (layered_map_sl). The former is essentially a
layered_map_sg with maximum level 0, and the latter
a layered_map_ssg with a single constituent skip list
(hence, with no opportunity to implement our partitioning

1Failed inserts due to pre-existing keys, or failed removals due to
absent keys are essentially “contains” operations, as they both return
immediately after identifying the respective scenarios above.
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scheme). Non-layered skip lists or skip graphs have maxi-
mum level z if the test’s key space is of size 2%, and layered
versions follow our partitioning scheme definitions (p. 3).
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Fig. 2: HC, WH: 32% effective updates.
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With a small key space (HC-WH), layered_map_11 per-
forms better than layered_map_sg and layered_map_sl
up to 32 threads, but the performance degrades quickly as
we have more threads or the key space gets bigger (MC-
WH, Fig. 3; LC-WH, [16]). The reason is that with more
threads or bigger key spaces, more elements need to be
traversed in the unique linked list upon searches. Then,
we could be tempted to say that the multilevel shared
structure in layered_map_sg is the reason it performs bet-
ter in MC-WH, but note that layered_map_sl performs
similarly than layered_map_11 in the same case MC-WH
for high thread counts. The reason why layered_map_sg
performs better in the MC-WH scenario is, therefore, the
unique differentiating factor: the partitioning scheme in
the shared structure (the skip graph). Further, in the same

MC-WH scenario, we note a clear performance separation
between layered_map_ssg and layered_map_sl after 32
threads. The unique differentiating factor here is multiple
vs one skip list as a shared structure. So, the existence of
multiple, overlapping of skip lists, employing a partitioning
scheme across threads is the differentiating scalability
factor for the good performance of our layered_map_sg.

As far as the lazy implementation performance, we
see it as a combination of (i) the effectiveness of our
partition scheme for increasing NUMA locality and re-
ducing contention (implied above and wverified below, in
item #2); (ii) the commission policy to unlink invalid,
marked nodes (isolated right below); and (iii) the fact
that with smaller key spaces, threads will more commonly
find unmarked nodes through their local hashtable, which
performs much better compared to the std::map local
structure. We show a lazy_layered_map_sgNA where we
make the commission period zero, as control. Under HC-
WH, [15] performs well, and our control implementation
is comparable to [5], [10]. Under MC-WH, [10] performs
well, and our control implementation is comparable to [5],
[15]. In any case, we confirm our expectation that naive
skip graphs scale poorly, because while in a skip list the
expected number of levels of each node is 2, in a skip
graph it is always the maximum. Further, on Tbhl I, we
see how layered_map_sg, without any commission period,
requires a lot more CASes per operation than other struc-
tures. With that in mind, and considering our indications
that the partitioning scheme works, we have first to make
sure that skip graphs become wviable with techniques such
as lazy insertions/removals, the commission period, and
our relink optimizations mentioned in p. IV.

2 - NUMA locality and contention reduction. We
verify that our partitioning mechanism promotes better
NUMA locality and reduced contention below. Figures 4
and 5 show heatmaps where coordinates (4, j) indicate the
distribution of CAS instructions per operation performed
by thread 7 into a node allocated by thread j, instrumented
manually on node access functions on the 96-thread MC-
WH scenario. The memory access pattern shows that the
larger the distance between thread IDs (which we adjusted
to match the NUMA distance), the smaller the number
of memory accesses. This access pattern correlates with
physical NUMA distance since (i) our testing framework
assigns threads pinned to closeby locations (considering
hyperthreads, cores, CPUs, NUMA domains) with closeby
IDs; and (ii) our partitioning scheme uses these reassigned
thread IDs in order to partition the skip graph.

Comparing the lazy skip graph and a skip list (which
serves as our control, as it has been implemented using
the same codebase and practices), the heatmaps indicate
a dramatic increase in CAS NUMA locality. We provide
graphics for other structures (non-lazy skip graph, non-
lazy sparse skip graph) in [16]. Also related to locality,
we expect fewer cache misses due to our partitioning
mechanism, which we confirm (yet document in [16]): with
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32 threads, our layered skip graph has a reduction of 21%
in L1 misses, 41% in L2 misses, and 18% in L3 misses.

Related to contention, Thl. I shows additional metrics
collected via manual code instrumentation, on the 96-
thread HC-WH scenario. Both our heatmaps and Thl I do
not count CAS/read/write operations performed over an
inserting node, otherwise locality would be artificially in-
flated with operations that are inherently local, as threads
have to initialize their allocated nodes. Any CAS operation
metric presented is a maintenance CAS: an operation
required to link, unlink, or cleanup nodes.

NUMA Distance Locality
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accessed from thread #
Fig. 4: MC-WH CAS heatmap, lazy map/SG.
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Fig. 5: MC-WH CAS heatmap, skip list.

Although lazy_layered_map_sg performs slightly more
reads per operation than skip lists, it performs 68% less re-
mote maintenance CASes per operation. The CAS success
rate is substantially higher (99% in lazy_layered_map_sg
vs. 88.3% in the skip list). Both the increase in NUMA
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lazy map/sg | map/sg | map/ssg | skip list
loc. reads/op 9.105 8.933 4.264 0.477
rem. reads/op 48.076 54.521 65.123 45.392
loc. CAS/op 0.02508 0.177 0.0137 0.012
rem. CAS/op 0.3493 2.524 0.888 1.113
CAS succ. rate 0.999 0.986 0.982 0.883

TABLE I: 96 threads, HC-WH. CAS/op does not in-
clude uncontended CAS operations upon node insertion.
Comparing the lazy map/sg with the skip list, we can
observe 6x more CAS locality, 65% less CAS/operation,
and substantially better CAS success rate.

locality, discussed before, and the contention reduction,
just discussed, are attributed to our partitioning scheme,
designed precisely with those goals in mind (p. 3). Our
technical report [16] presents similar results for atomic
reads. Atomic writes are only used to initialize nodes
before insertion, so these operations are all contention-free
and 100% local, so they are not measured.

3 - Relaxed priority queues. Figure 6 tests multiple
implementations for relaxed priority queues using skip
graphs. The spray implementation consists on the appli-
cation of the spraying technique of [14] over skip graphs;
the sg_spray implementation is our custom protocol that
traverses the skip graph deterministically, marking ele-
ments along this traversal (described in detail in [16]). For
both approaches, we also show lazy variants (spray_lazy
and sg_spray_lazy), using the ideas presented earlier in
the context of map ADTs. We also have a control skip
list (implemented using the same codebase and practices)
where we perform spray operations as in [14].

Lazy versions are expected to perform faster for similar
reasons they perform better in maps, although, for relaxed
priority queues, we cannot make guarantees about their
degree of relaxation. The reason is that upper-level lists
are substantially more sparse in our lazy implementations,
and elements are added to those lists by demand, some-
thing which we cannot (at this point) reasonably model.
Now focusing on the non-lazy versions, we note that spray
scales better than sg_spray. Although Theorem 3 indicate
that sg_spray is subject to a very small contention, we
also show in [16] that the range of spray is slightly
larger. Fig. 7 shows an experiment similar to the one in
[14], where we perform traversals and only note which
nodes would be marked, without actually marking any
element. The experiment shows that sg_spray is indeed
less relaxed than spray, so the reduced scalability of
sg_spray is explained in Fig. 6. In conjunction, Figures 6
and 7 essentially exhibit a tradeoff between priority queue
relaxation and scalability.

4 - Load balancing. In order to evaluate load balanc-
ing, we consider two extremal experiments: (i) A scenario
where only thread Ty inserts, and all others perform
removals and contains operations in an MC-WH exper-
iment, Figure 8 still shows that the sizes of the local
structures are similar. In that figure, the X-axis represent
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100 discrete time points, varying from 0-10s, the Y-axis
represents 8 different threads, and the color indicates the
local structure size (not counting marked elements). (ii) A
scenario where 1/2 of the threads insert only on the 0-1023
range of a 2048 keyspace, and 1/2 of the threads insert
only on the 1024-2047 range of the keyspace. Figure 9
shows that the key distribution of two threads that belong
to two different groups are spread throughout the whole
element space. In the figure, the X-axis represents possible
keys, the Y-axis represents 10 discrete time points, one
per second, and the color represents whether a particular
key belongs to thread 1 or 2 in their local structure. Our
load balancing mechanism has shown to have about 20%
of scalability impact at the highest thread count, but it
can be turned off completely in case the application has a
uniform operation distribution among threads.

VI. CONCLUSION

We presented a technique to promote NUMA-aware
data parallelism inside the concurrent data structure,
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Fig. 8: Local structure sizes, keyspace = 2048. The color
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Fig. 9: Key distribution, 2048 keyspace. The color indi-
cates the owning thread, per key, per time.

bringing significant quantitative and qualitative improve-
ments on NUMA locality, as well as reduced contention
for synchronized memory accesses. Our design is based on
integrating thread-local sequential maps with skip graphs,
while performing a data partitioning scheme over the
skip graphs for increased NUMA locality. By “qualitative”
increase in NUMA locality, we mean that remote memory
accesses are not only reduced in number, but the larger
the distance between threads in the system, the larger
the reduction is. We provide an optional load-balancing
mechanism for applications where the types of operation
are not uniformly distributed among threads.

For relaxed priority queues, we consider two alterna-
tive implementations: (a) using “spraying”, a well-known
random-walk technique usually performed over skip lists,
but now performed over skip graphs; and (b) a custom
protocol that traverses the skip graph deterministically,
marking elements along this traversal. We provide formal
arguments indicating that the second approach is slightly
more relaxed, that is, that the span of removed keys is
larger, yet shows smaller contention and higher scalability.
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