
Brief Announcement: Layering Data Structures over Skip
Graphs for Increased NUMA Locality

Samuel Thomas
Hammurabi Mendes
sathomas@davidson.edu
hamendes@davidson.edu

Davidson College
Davidson, NC, USA

ABSTRACT
We present a lock-free, linearizable, and NUMA-aware data struc-
ture that implements sets, maps, and priority queue abstract data
types (ADTs), based on using thread-local, sequential maps that
are used to “jump” to suitable positions in a lock-free, linearizable
variant of a skip graph. Our skip graph is suitably constrained in
height and subjected to a data partition scheme that reduces con-
tention and increases NUMA locality. We developed an additional
skip graph variant, which we call sparse skip graph, that causes
our thread-local maps as well as our shared structure to become
more sparse. Compared to using regular skip graphs, sparse skip
graphs show increased performance in workloads dominated by
“insert” or “remove” operations, and comparable performance in
workloads dominated by “contains” operations.

CCS CONCEPTS
•Computingmethodologies→Concurrent algorithms; • Soft-
ware and its engineering → Concurrency control.

KEYWORDS
synchronization, skip graphs, NUMA, lock-freedom, locality

ACM Reference Format:
SamuelThomas and Hammurabi Mendes. 2019. Brief Announcement: Lay-
ering Data Structures over Skip Graphs for Increased NUMA Locality . In
2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),
July 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3293611.3331576

1 OUR APPROACH
We implemented a lock-free, linearizable, and NUMA-aware data
structure that implements a set, map, and priority queue abstract
data types (ADTs), based on using thread-local, sequential maps
layered on top of a lock-free, linearizable variant of a skip graph [1,
3]. Our layered structure is composed of multiple local structures, all
thread-local, sequential, navigable maps, and a single shared struc-
ture, a skip graph, operated concurrently by all threads. A skip

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6217-7/19/07.
https://doi.org/10.1145/3293611.3331576

graph is comprised of multiple skip lists that increasingly share
lower levels (see more details below).

We distinguish between local nodes or shared nodes depending
on which structure they belong to. Each local structure’s job is to
map elements inserted by their owning thread to shared nodes in
the skip graph. Inserting an element e adds a shared node s to the
skip graph, and creates a mapping e → s in the local structure. A
removal of element e will (i) logically delete the shared node s in
the skip graph, (ii) cause a physical cleanup in the shared structure
and (iii) cause the thread that contains the mapping e → s in its lo-
cal structure to physically cleanup that association upon detection.
Steps (ii) and (iii) can happen in any order.

The skip graph and its partitioning.Our skip graph contains
multiple singly-linked lists at different levels (Fig. 1). Starting from
level zero, each level i contains 2i lists. All elements belong to the
level-0 list, labeled as “λ”, the empty string. The level-0 list is parti-
tioned into two level-1 lists, labeled “0” and “1”. Each level-1 list is
further partitioned into two level-2 lists: the level-1 list labeled “0”
(resp. “1”) is partitioned in two level-2 lists, labeled “00” and “01”
(resp. “10” and “11”). The partitioning of elements is not done in a
probabilistic way as in the original skip graph: we have a partition-
ing scheme that assigns threads to levels.

Figure 1: A skip graph is a collection of skip lists sharing
their bottom levels.We partition our dataset suitably so that
we increase NUMA locality and reduce contention.

We consider a system of T threads {t1 . . . tT }. The skip graph’s
maximum level is MaxLevel = ⌈log(T )⌉ − 1. A low MaxLevel
like this does not guarantee logarithmic searches on a skip graph
standing by itself, but our local structures compensate this fact by
“jumping” to positions in the skip graph near where data struc-
ture operations take place. This “jump” happens without any con-
tention, as each thread’s local structure is private. Each thread Ti
will have a membership vector Mi , a sequence of MaxLevel bits,

Session 9 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

422

https://doi.org/10.1145/3293611.3331576
https://doi.org/10.1145/3293611.3331576
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3293611.3331576&domain=pdf&date_stamp=2019-07-16


whose suffixes indicate on which unique shared skip lists the par-
ticular thread can operate. This essentially makes all insertions
from a single thread to happen in a unique skip list within the skip
graph, denoted by Li , and called the associated skip list of thread
Ti . As an example, consider the skip graph with MaxLevel = 2
of Fig. 1. Each thread will have a 2-bit membership vector. If, say,
Ti has Mi = “10”, then Ti will always insert or remove in the skip
list Li = (λ, 0, 10). With this scheme, we have at most two threads
operating in each of the top-level shared linked lists, and at most
T /2i threads operating in any particular level-i list. Note that the
original definition of skip graphs assumes a membership vector
per element, while in our approach all elements inserted by a sin-
gle thread share the thread’s membership vector. Membership vec-
tors can be generated as simply as taking the binary suffix of ap-
propriate length of each thread ID, or according to physical NUMA
characteristics of the machine.

We define local memory accesses as those operating in memory
initially allocated by the current thread (under first-touch NUMA
policy), and remote accesses simply as those that are non-local.
Note that we adopt a conservative notion of local, as data initially
allocated by two different threads could be located within the same
NUMA node. Nevertheless, our approach, implemented in ∼10K
lines of C++14, operate up to 23% faster than a highly-optimized
lock-free skip list, an optimized version of that in [6] (our fastest
contender), with up to 70% of reduction on the number of remote
synchronized reads, and up to a 3.21 times increase in CAS locality
– that is, the ratio of local over remote CAS instructions – for 32
threads. In addition, we implemented another skip graph variant,
called sparse skip graph. Using sparse skip graphs as our shared
structure causes our local structures to be made more sparse, as
we discuss later in page 2. Compared to using regular skip graphs,
sparse skip graphs show increased performance in workloads dom-
inated by “insert” or “remove” operations, and comparable perfor-
mance in workloads dominated by “contains” operations. We dis-
cuss the details in our full paper (available in [7]). Essentially, the
overhead of the sparse index (i.e. the increased number of node
traversals on searches) is compensated by more efficient insertions
and removals if the underlying skip graph is also more sparse. Our
technique assumes a homogeneous workload among threads, yet
we can imagine adaptations of our mechanism, such as searching
using another thread’s local structure, or using some form of dele-
gation/helping mechanism to handle heterogeneous workloads.

A relevant previous work that also relies on using “indexes” to
improve access locality on “shared structures” is NUMASK [4], a
modified skip list that uses its higher levels as a hierarchical index
to the bottom-level list. We differ from [4] as our shared structure
consists of a multi-level skip graph, aiming (i) to avoid that traver-
sals navigate back and forth across NUMA nodes, increasing local-
ity; and (ii) to reduce contentionwith a careful partitioning scheme
that creates areas within the shared structure where only subsets
of threads operate. A similar separation of thread-local views and
shared parts has been discussed in [2], although their approach is
more akin to combining [5], as they merge local views into the
global structure from time to time.

Sparse Skip Graphs. As noted before, we developed a second
shared data structure, which we call sparse skip graph. This data
structure is a skip graph where elements are present in level i of

any shared skip list with expectation 1/2i , just like in a regular
skip list. The sparse skip graph is still a set of skip lists sharing
their bottom levels, although the levels become more and more
sparse just like in a skip list. For instance, in Fig. 1, each of the
level-1 lists “0” and “1” would partition only 50% of the elements
of “λ”, which would be selected at 50% chance independently. So,
“0” and “1” would each have about 25% of the elements in “λ”. Simi-
larly, the level-2 lists “00” and “01” would partition only 50% of the
elements of “0”, each selected at 50% chance, independently. So,
lists “00” and “01” would each have about 6.25% of the elements in
“λ”. Note that elements are present in level i of a particular linked
list with expectation 1/4i . Importantly, in our technique, only el-
ements that reach the top level are added to the local structures.
Therefore, sparse skip graphs also cause the local structures to
become more sparse. This is crucial because the local structures,
besides pointing to shared nodes nearby the target destinations,
should also point tomaximum-level nodes fromwhichwe can start
an efficient search. Hence, using sparse skip graphs gives two im-
mediate advantages: (i) the local structures are smaller; and (ii) the
insertion and removal in the shared structure requires changes in
less than MaxLevel levels. The tradeoff is that the starting point
given by the local structures is not as close to the requested el-
ement compared to regular skip graphs. Our preprint [7] has a
complete discussion on linearizability, both for skip graphs and
for sparse skip graphs.

2 EVALUATION
We conduct experiments in a systemwith 2 (NUMA) sockets, 16 In-
tel Xeon E5-2620 cores (32 hardware threads), each running at 2.0-
2.5GHz (varies due to TurboBoosting), and 128GB of memory. The
tool numactl --hardware reports relative intra-node distances of
10 and inter-node distances of 21. The system is running Ubuntu
18.04 LTS with kernel version 4.15.0-43. We use clang++ 6.0, pass-
ing the -std=c++14 -O3 build flags. We run over 4700 tests, span-
ning 12.4 hours.We run experiments for 10s of CPU time per thread,
reporting the total number of operations per millisecond, averaged
from 5 runs. We run insert-remove-contains mixes of 60-30-10, 30-
60-10, and 20-20-60. The numbers denote the percentage of each
operation. Insert and contains operations are done with keys cho-
sen uniformly at random from the element space. Removals are
done with keys chosen uniformly at random from either (i) the
element space; or (ii) the elements previously inserted by the cur-
rent thread. Each time, a thread chooses either strategy (i) or (ii)
with chance 50%. Threads run batches of 10 operations in order to
amortize clock_gettime(), the only system call in the measured in-
terval. The data structures are always preloaded with 20% of their
maximum capacity before any measurements. Threads are pinned
to each CPU, and we fill a socket before adding threads to another
socket. We use libnuma on Linux to have each thread preallocate
3GB of private memory, under a first-touch NUMA memory pol-
icy. We preallocate memory in order to avoid intra-socket delays
for operations in the local structure, and we never free it as we do
not want to mistakenly account for the performance of the mem-
ory allocator. The actual method by which we report the ratio of
local vs. total memory accesses is by manual code instrumentation.

Session 9 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

423



1 -Remote read-syncs andCASes. Experiments in [7] showed
that the absolute number of CAS and read-syncs per operation is
highly reduced in our approach in comparison to the skip lists.
CASes are reduced only about 7%, but read-syncs are reduced by
half with 32 threads, considering our sparse skip graphs. We at-
tribute this to the impact of our local structure indexing, with the
maps, that indeed jumps to nearby locations. Our experiments also
reveal a higher success rate of CASes in the layered approach, with
up to 99.4% of successes vs. 95.7% in the skip lists for the 30-60-10.
We attribute this to our partitioning scheme, designed to accom-
plish this goal as well as to increase NUMA locality.

2 - Indexing efficiency. Another experiment (see [7]) shows
how a layered structure with a non-sparse skip graph has a 76% re-
duction in the number of traversed shared nodes compared to a reg-
ular, non-NUMA, concurrent skip list, on 32 threads, particularly
for non-sparse skip graphs. Sparse skip graphs imply more sparse
local structure indexing, as less shared nodes reach the topmost
level and get included in the local structures. Our result shows that
even though the initial point of the search is not as optimized as
in the non-sparse skip graph, the number of traversed nodes per
search operation is still about half of what we have in a traditional
skip list. We also see a test showing our local structure indexing
a simple linked list, meant to isolate the performance benefits of
skip graphs. With 32 threads, in a workload dominated by contains
(so fewer insertions), the number of traversed nodes per search of
this indexed linked list can go over 50% higher than in a skip list,
whereas in our structures they are at most 50% of the value in a
skip list. See [7] for a full set of diagrams.

3 - NUMA locality. Our experiments in [7] also show that the
ratio of local over total memory accesses is much improved in our
approach. For CASes, with 32 threads, a non-sparse skip graph has
81.3% of its operations local (i.e., traversing elements inserted by
the operating thread), while this percentage for a sparse skip graph
is 40.7%, and for a skip list only 25.3%. For read-sync operations,
60% of them are local in the non-sparse skip graph, 17.4% in the
sparse skip graph, but only 2.2% in a skip list (see [7]).

4 - General performance and design by experimentation.
As discussed in [7], we noticed that when we use padding to align
individual pointers of the next array into distinct cache lines, we
not only increase memory usage dramatically, but also hurt per-
formance (∼ 30% slowdown). This makes sense as our algorithms
typically perform read-syncs or CAS instructions across all levels
of a node’s successor pointers. We also tried to physically delete
immediately after its logical deletion, noticing a ∼ 10% slowdown
even at relatively low contention. We attribute this to missing the
chance of using the “hot” cache lines. We do introduce padding in
the head of the skip graph, as threads only access specific indexes.
Figure 2 shows the performance of a contains-heavy scenario in op-
erations/msec.The structures tested are: map_{sg/ssg}, C++maps
over skip graphs (resp. sparse skip graphs); sl_{sg/ssg}, the same
but with a skip list used as the local structure; a lock-based skip
list; a concurrent skip graph and a skip list without our layering
technique; Finally, indexed_list is the approach of merely layer-
ing the local structures on top of a shared linked list. We use this
test to demonstrate the benefit of skip graphs and our partitioning
scheme. We also show insert-heavy and remove-heavy workloads
in [7], and we perform even better in those workloads.

Figure 2: Average ops/msec, 20-20-60

3 CONCLUSION
We presented a technique based on layering local, sequential data
structures over skip graphs variants aiming at increasing NUMA
locality. At a high level, our design consists of a carefully designed
and partitioned shared structure, well-integrated with sequential
local structures, operatingwithout contention. Together, these data
structures promote increased NUMA locality, as verified by exper-
imentation. Compared to skip lists, our experiments show (i) a
much higher ratio of memory reference locality (up to 3.21 times);
(ii) better performance for our approach (up to 23%) even though
some variants require more synchronization per operation than
others; (iii) a slight increase in cache performance (hit ratio), par-
ticularly for the sparse skip graphs; (iv) a strong reduction on the
number of remote synchronized reads (up to 70%). As future work,
we are interested in exploring our structural advantages in the de-
sign of exact and relaxed priority queues (see in [7]).

REFERENCES
[1] Nicholas J. A, Dunagan Michael, B. Jones, and Stefan Saroiu. Skipnet: A scal-

able overlay network with practical locality properties. In Proceedings of USENIX
Symposium on Internet Technologies and Systems, 2003.

[2] Deepthi Akkoorath, José Brandão, Annette Bieniusa, and Carlos Baquero. Global-
local view: Scalable consistency for concurrent data types. In Marco Aldinucci,
Luca Padovani, and Massimo Torquati, editors, Euro-Par 2018: Parallel Processing,
pages 492–504, Cham, 2018. Springer International Publishing.

[3] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms,
3(4), November 2007.

[4] Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri. NUMASK:
High Performance Scalable Skip List for NUMA. In Ulrich Schmid and Josef Wid-
der, editors, 32nd International Symposium on Distributed Computing (DISC 2018),
volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–
18:19, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[5] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining syn-
chronization technique. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages 257–266, New
York, NY, USA, 2012. ACM.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

[7] Samuel Thomas and Hammurabi Mendes. Layering data structures over skip
graphs for increased NUMA locality. CoRR, abs/1902.06891, 2019.

Session 9 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

424


	Abstract
	1 Our Approach
	2 Evaluation
	3 Conclusion
	References



