
Towards Hardware Accelerated Garbage Collection
with Near-Memory Processing

Samuel Thomas∗, Jiwon Choe∗, Ofir Gordon†, Erez Petrank†, Tali Moreshet‡, Maurice Herlihy∗, R. Iris Bahar§
∗Brown University, †Technion Institute-Israel, ‡Boston University, §Colorado School of Mines

Abstract—Garbage collection is widely available in popular
programming languages, yet it may incur high performance
overheads in applications. Prior works have proposed specialized
hardware acceleration implementations to offload garbage collec-
tion overheads off the main processor, but these solutions have yet
to be implemented in practice. In this paper, we propose using off-
the-shelf hardware to accelerate off-the-shelf garbage collection
algorithms. Furthermore, our work is latency oriented as opposed
to other works that focus on bandwidth. We demonstrate that
we can get a 2× performance improvement in some workloads
and a 2.3× reduction in LLC traffic by integrating generic
Near-Memory Processing (NMP) into the built-in Java garbage
collector. We will discuss architectural implications of these
results and consider directions for future work.

Index Terms—garbage collection, near-memory processing,
benchmarking

I. INTRODUCTION

Garbage collection (GC) is an automatic memory man-
agement protocol utilized by many high level programming
languages [8], including Java, Python, Go, etc. These garbage-
collected programming languages are popular among devel-
opers because manual memory management is difficult and
error-prone, leading to memory bugs that are notoriously hard
to overcome.

Unfortunately, garbage collection may utilize 10-30% of
application CPU cycles, and the resulting overhead can be
even more for memory-intensive edge-case workloads [20].
As such, prior work [3], [16], [20] has looked into hardware-
accelerated garbage collection. This is an idea about as old
as garbage collection itself [12], [17]. However, while these
works provide strong theoretical solutions, none of them
have been adapted in practice due to complex hardware that
has highly specialized use cases. That is, none of the older
proposals have been integrated into commodity or production
hardware, for the solutions were not generalizable across
various programming languages with different GC algorithms
and implementation-level details [21], [22].

Nonetheless, prior work on alleviating GC bottlenecks have
provided a fundamental understanding of GC behavior. In par-
ticular, the marking phase of the mark-and-sweep algorithm,
which identifies the live objects (i.e., uncollectible memory)
in an application, is fundamentally pointer-chasing and thus
subject to bottlenecks arising from frequent but irregular
memory accesses.

To address this, we turn to near-memory processing (NMP).
NMP describes a lightweight, simple compute unit being
placed at the logic controller of a DRAM vault. In the NMP

architecture, having these compute units physically near the
memory allows for higher memory bandwidth and lower
latency memory access. As such, NMP has recently reemerged
as a promising solution to memory bottlenecks in pointer-
chasing, data-intensive applications. Many prior works have
delved into accelerating pointer-chasing operations through
hardware and software redesigns with NMP [11], [13], [19].
They do so by exploiting bandwidth – a well explored property
of NMP-style accelerators.

In this work, we aim to provide an exploratory analysis on
accelerating garbage collection with NMP via latency benefits.
We identify that the marking subroutine of the mark-and-
sweep garbage collection algorithm exhibits this same pointer-
chasing behavior. Work in [10], [11] provide precedent for
accelerating pointer-chasing applications via NMP. In this
work, we extend these themes to garbage collection – which
is more complex and works at a higher level of abstraction.

This work specifically examines the effectiveness of offload-
ing the pointer-chasing marking phase of garbage collection
to generic near-memory compute units. Instead of developing
idealistic custom hardware, we aim to exploit a generic NMP
hardware similar to what is already in production [1]. We
aim to take advantage of existing under-utilized hardware as
opposed to developing new hardware with the hope that it
will be deployed. While custom garbage collection hardware
may lead to performance benefits in simulated environments,
these proposed designs may not be realistic. Instead, we work
from the overriding belief that good solutions on unmodified
hardware can lead to implementations that can be easily
adopted in off-the-shelf systems.

Our early results are promising. Depending on the evalua-
tion configuration, offloading Java garbage collection’s mark-
ing phase to near-memory compute units can reduce last-level
cache misses by up to 2.3× and improve overall benchmark
performance by up to 2×. Although further investigation is
needed in order to extend the benefits to a wider range of
workloads and configurations, the analysis points to several
promising directions for future work.

This paper is organized as follows: in Section II, we
briefly review the mark-and-sweep algorithm used in garbage
collection and provide motivation for the use of generic
NMP architectures; in Section III, we describe the mechanism
for offloading computation; in Section IV, we evaluate and
analyze the architecture-level behavior of our approach across
varying evaluation configurations; in Section V, we consider
opportunities for future work based on our initial findings.



Fig. 1. Illustration of the marking phase in the mark-and-sweep GC algorithm.
The stack of live object roots point to live objects in the heap. Objects with
an x have been marked as live. Figure (a) shows the initial state of the heap.
Figure (b) illustrates A being popped from the live object roots to mark
referent item C. figure (c) shows C being added to the live object roots.
Figure (d) shows the state after B has been popped from the live object roots,
with H marked as live.

II. BACKGROUND

Garbage collection often employs the mark-and-sweep
method. Briefly described, let roots denote all pointers directly
reachable by program threads. The marking phase starts by
pushing all root pointers to the mark-stack (denoted as live
object roots in Fig 1). Next, an iterative process of handling
the mark-stack is executed until it is empty. In each iteration,
(1) a pointer is popped from the mark-stack (depicted as A in
Fig. 1b), (2) the referent object is scanned for pointers, and
for each referenced object: (2a) it is marked as live (depicted
as C in Fig. 1b) and (2b) if not previously marked, it gets
pushed into the mark-stack (depicted as C in Fig. 1c). Once
the stack is empty, the heap is swept clean of all objects that
have not been marked. In Fig. 1, this would ultimately clear
nodes E and F .

We look to utilize near-memory processing (NMP) to op-
timize garbage collection in Java. NMP architecture based
on 3D-die stacking technologies have been explored as a
workaround for computations with memory bottlenecks, in-
cluding graph processing and generic pointer-chasing [2], [10],
[11], [13]–[15], [19], [23]. NMP describes an architecture in
which a lightweight processor is placed at the logic controller
of the memory die to perform more complex computation
than can be performed in a traditional memory controller.
While NMP architectures do not cut down latencies inherent
to DRAM, they reduce performance degradation and energy
consumption caused by data movement on long and narrow
off-chip interconnects

The benefits of using NMP have been shown to be two-fold.
For one, pointer-chasing applications tend to follow pointers to
random locations in memory and exhibit poor cache locality as
a result. Instead, by using NMPs, the same computation can be
performed without polluting the cache with pointers that will
not be reused. The other benefit of NMP is that it exhibits
a lower latency than CPUs in that there is no interconnect

latency at play, which saves cycles. In our work, we work from
the observation that the marking phase of garbage collection
in Java exhibits similar behavior.

The pointer-chasing aspect of mark-and-sweep causes mem-
ory bottlenecks, which relevant prior work have tried to
address by developing customized hardware accelerators. In
particular, Maas et al. [20] designs specialized accelerators for
both the marking and sweeping phases of GC to avoid cache
pollution. They also describe an additional device driver that is
maintained by the kernel so that any higher level programming
language can utilize the underlying hardware. Charon [16]
identifies certain fine-grained operations (e.g., scanning the
heap, copying objects for memory consolidation, etc.) as GC
primitives and designs custom near-memory accelerators for
each of these primitives. While these works have shown
performance improvements, each required significant hardware
modification and limited their evaluation to workloads with
large objects in order to maximally exploit the high bandwidth
benefits of NMP.

Our work is distinctly different from prior works in that
we assume generic near-memory compute units. That is, these
cores have no hardware components that are specialized to
optimized garbage collection. Instead, all components of these
cores can be utilized by general computation. We focus on
appropriately partitioning the GC work between the on-chip
host cores and the near-memory compute units and in turn aim
to modify the mark-and-sweep algorithm accordingly to take
advantage of NMPs latency benefits without polluting on-chip
caches.
Java JDK Garbage Collection: While Java is not the only
language that uses mark-and-sweep, our investigations are
based on Java JDK’s mark-and-sweep garbage collection. This
garbage collection happens in a stop-the-world manner, mean-
ing that application execution is stopped entirely while the
garbage collection process runs. Garbage collection algorithms
that run concurrently with the application have been proven to
be too slow to be used in [7], so we do not consider them in our
evaluation. Moreover, garbage collection in Java is triggered
when heap space utilization exceeds 80% of its capacity.
As such, larger heap sizes means that fewer collections will
occur and overall application execution will ultimately be
faster. However, because our approach aims to reduce the GC
execution time, we intentionally reduce the heap size in order
to trigger more collections and measure their performance
appropriately.

More specifically, the JDK employs generational garbage
collection, in which the heap is divided into a young gen-
eration heap and an old generation heap. This is based on
the insight that objects are likely to be freed soon after their
allocation. As such, objects are first placed in the smaller
young generation heap. Objects that survive young generation
collections are moved to the old generation heap, where
collections are infrequent but incur longer pauses. In particular,
it is in old generation collections (i.e., full collections) that the
mark-and-sweep algorithm is used. Thus, in order to trigger
more mark-and-sweep garbage collections for evaluation, we



TABLE I
EVALUATION FRAMEWORK CONFIGURATION.

Host Configuration
Host cores in-order processor (gem5 TimingSimpleCPU)

2GHz frequency, 1 thread/core
L1 cache 48kB icache, 32kB dcache, private

2-way set-associative LRU
L2 cache 1MB, shared, 8-way set associative LRU

NMP Core Configuration
NMP cores in-order single-cycle processor

(gem5 TimingSimpleCPU), 2GHz frequency
L1 cache 48kB icache, 32kB dcache, private

2-way set-associative LRU
Memory Configuration

2GB DRAM (gem5 DDR3 1600 3x3)
tRP : 13.75ns, tRCD : 13.75ns, tCL: 13.75ns, tBURST : 3.2ns

varied the young and old generation heap sizes.

III. METHODOLOGY

We perform our evaluation on a gem5 [4] full-system
simulation extended from the ARM bigLITTLE configuration.
ARM bigLITTLE describes a heterogeneous CPU architecture
with high-powered and low-powered cores, and low-powered
cores exhibit properties similar to NMP cores. In particular,
little cores and NMP cores both are single-threaded, in-order
cores with simple execution pipelines, and neither utilize the
host’s cache hierarchy. This makes the ARM bigLITTLE
architecture particularly well suited to evaluate the ability of
our approach to reduce cache pollution. Then, we modify the
timing across the little core memory access pipeline so as to
accurately model the memory access latency of a near-memory
processing core. In particular, we remove interconnect latency,
which was shown to have a significant impact on performance
and energy consumption in [11], and reduce memory access
latency by 5% to model NMP’s faster access times due to
proximity to memory.

We found this simulation model appropriate given the
similar properties of ARM little cores and NMP cores in
production. Furthermore, the JDK proved to be too complex
for other state-of-the-art simulators that may more precisely
simulate NMP, such as SMCSim [9]. Running these bench-
marks on these simulators requires intensive changes to the
simulators that would have had little impact on overall runtime
performance or cache behavior results. Given this, ARM
bigLITTLE provides a sufficient model for performing our
evaluation. Full details of our hardware configurations can be
viewed in Table I.

At a high level, we aim to pin the marking protocol to NMP
cores in our simulation. However, achieving this end is non-
trivial. In order to do so, we modify the Java garbage collector
in the JDK version 14. In particular, we isolate the marking
phase of the mark-and-sweep algorithm in order to run it on the
NMP cores. This entails creating a specialized workGroup –
a special garbage collection process object in the JDK source.
We then leverage the fact that our assumed architecture allows
the operating system (OS) to see the NMP core as a core in
the simulated environment to offload computation by pinning

it to NMP cores, but that the Java runtime environment only
has explicit knowledge of host cores.

The ability of the OS to manage the host processors and
NMP cores solves difficult problems in NMP research that are
tangential to offloading computation. For example, coherence
between host and NMP cores remains an open problem that
is distinct from partitioning work across the heterogeneous
architecture, but is difficult to navigate without the help of the
OS.

By implementing this protocol in software, our approach
is not limited by the ability to implement software primitives
in hardware. This enables our approach to take advantage of
general-purpose hardware without any invasive architectural
changes. Furthermore, this means that we can extend our
approach to newer versions of garbage collection in the JDK
and other high level programming languages that might exhibit
different semantics. Supporting this flexibility is important
given that software frequently evolves – for example, JDK
version 14 had stable changes pushed almost every month
during its release.

IV. EVALUATION

In our evaluation, we use two configurations: host-only
and NMP. The host-only configuration models a conventional
system with on-chip processors, L1 caches and a shared L2
cache. The NMP configuration incorporates NMP cores into
the host-only configuration. In the NMP configuration, there
is a single near-memory core (NMP core) equipped with an
L1 instruction and data cache. We use the h2 benchmark
from the DaCapo benchmark suite [5], which is a standard
Java garbage collection testing suite. Prior evaluation [7] of
the DaCapo suite has demonstrated that the h2 benchmark is
among the most memory intensive benchmarks in the suite
and is well suited for evaluating full collections. When using
the DaCapo benchmark suite, it is standard practice to run
warm-up iterations prior to collecting measurement data. This
is done in order to avoid measuring extraneous behavior such
as dynamic loading and compiling of modules and classes,
which rarely happen in the typical execution of long-running
applications. The number of warm-up iterations varies in prior
work from one [6] to 20 [18]. In our preliminary evaluation, we
found that the performance improvements gained by increasing
the number of warm-up iterations from four to 20 is less
than 5%. We perform evaluations with and without warm-up
iterations. For evaluations with warm-ups, we run three warm-
up iterations and report the measurements that we obtain from
the fourth unless the discussion explicitly states otherwise.

A. Performance

Our initial evaluation is promising, and its results are shown
in Fig. 2a. Performance refers to runtime in milliseconds, so
lower is better. The evaluation involved varying the young and
old generation heap sizes to show scalability and promise of
our approach. We used the following old/young heap size con-
figurations: (1) 4GB/256MB (JDK default), (2) 250MB/50MB,
and (3) 250MB/100MB. By utilizing smaller old generation



Fig. 2. Running time (y-axis) of the h2 benchmark under different heap size
configurations (x-axis). (a) shows performance without warm-up iterations and
(b) shows performance with warm-up iterations.

heap sizes in configurations (2) and (3), more mark-and-
sweep full collections were incurred overall. No warm up
iterations were used in this initial evaluation. The figure shows
that the NMP configuration can demonstrate up to a 2x
improvement in performance (which occurred in the default
JDK configuration).

We see that the 250MB/100MB configuration is consistently
slower than the 250MB/50MB configuration. This is largely
due to the fact that young garbage collections will take longer
in configurations where the young generation size is bigger
(as there are more objects in the heap), and our approach does
not modify young generation collections. In the 250MB/50MB
heap size configuration, we see a 48% improvement in overall
performance of the NMP-based solution relative to the un-
modified host-only baseline. In the 250MB/100MB heap size
configuration, we see a 47% improvement in overall perfor-
mance by the NMP-based solution. The takeaway from this
result is that full collections of the young and old generation
heaps are the bottleneck to performance rather than having
a large number of young generational collections. Fine-tuning
heap-sizes for optimal performance is difficult, and is beyond
the scope of this project. However, we see that the performance
improvement with our approach is consistent across each heap
configuration without warm-up iterations. As such, we use
these results to further our intuition, but otherwise largely
focus on the default heap size configuration.

Fig. 2b shows the impact of warm up iterations on per-
formance. The results demonstrate that the differences in
performance are much less significant between the NMP and
host only configurations with warm ups. Fig. 3 shows the
impact on performance as the number of warm-up iterations
increases in the h2 benchmark with and without NMP in
the default heap size configuration. As previously described,
there is 2× difference in performance without any warm up
iterations, but this difference is reduced over time. In fact, the
difference in performance becomes negligible across the two
configurations after three warm up iterations.

We see a greater impact of our approach on performance

Fig. 3. Running time in milliseconds versus number of warm-up iterations
on the h2 benchmark in host only and NMP configurations with the default
heap size configurations.

Fig. 4. Number of requests for the L2 in each of the heap configurations by
architecture. Most requests occur in the first warm-up iteration.

without warm-up iterations. This is largely attributed to dif-
ferences in application behavior. In general, evaluating per-
formance on a cold-start tends to induce more cache misses.
Seeing as our approach optimizes L2 misses, it makes sense
that our approach performs better in configurations where there
are more L2 misses. We evaluate and discuss this in more
detail with a more complete sensitivity analysis in Sec. IV-C.

B. Cache Traffic

At the architecture level, we find that L2 traffic is the
primary culprit for differences in overall behavior. Fig. 4
shows that more than 77% of overall L2 accesses occur in
the first warm-up iteration. This implies that the majority
of cache traffic occurs during the marking phase of full
generational garbage collection. The NMP provides the most
benefit when the application exhibits a large number inefficient
cache accesses. Seeing as we only move the marking phase
of full generation collections to the NMP, it is implied that
the difference in L2 cache accesses between the host only
and NMP configurations are due to L2 accesses from this
procedure. In our evaluation, we also measure how many of
these accesses to the L2 come in the first warm-up iteration
relative to the rest of the benchmark’s execution.



In this evaluation, we observe two key takeaways. For
one, we find that the NMP approach is very effective at
reducing the number of L2 accesses in the first iteration of
benchmark execution. As demonstrated in comparing default
heap configurations, we see that there are approximately 2.4
times more first warm-up iteration L2 accesses in the host
only configuration compared to the NMP configuration. This
shows that the marking phase of full generation collections
significantly dominates L2 cache accesses in baseline pro-
tocols. This trend is consistent across all heap sizes, which
suggests that application behavior in a cold-start requires lots
of L2 accesses as a consequence of garbage collection. We
also see that the number of L2 accesses is reduced in the
rest of benchmark execution by as much as 81% (in the
250MB/100MB configuration), but the number of accesses as
a whole is much lower. As such, the impact of our technique
will not be as apparent.

The other takeaway from this evaluation is that an over-
whelming majority of L2 accesses occur in the first warm-
up iteration across all heap configurations. On average, we
observe that 61% of L2 accesses occur in the first warm-up
iteration. As such, the impact of our technique will be most
visible in this iteration.

More generally, these large differences in cache traffic for
the L2 in the host largely describe the benefits of utiliz-
ing NMP. That is, the cache hierarchy in the host is not
saturated by requests for the L2 during the marking phase
of garbage collection. Performing these operations elsewhere
in the architecture means that these caches will be subject
to less pollution. This should ultimately help application
performance.

C. LLC Variations

We vary the L2 size in order to provide a sensitivity analysis
of our approach with warm-up iterations. In particular, we
look to demonstrate the efficacy of our approach – namely,
providing a fast alternative for workloads with many L2
accesses – while controlling for warm-up iterations and heap
sizes. That is, we evaluate our technique with the default
heap configuration and with four warm-up iterations – cir-
cumstances when the L2 misses are minimized. Our approach
optimizes for L2 misses, and we aim to use this section to
confirm our initial hypothesis that applications that use the L2
inefficiently will benefit from our approach.

Fig. 5 demonstrates the differences in performance between
NMP and host only configurations. We measure for overall
running time, so lower is better. In the configuration where the
L2 is set to 512kB, we see the fewest number of L2 misses
and the differences in performance between the NMP and host
only configuration is less than 1%. As L2 cache size decreases,
the number of L2 misses and the impact of the NMP-based
approach both increase. That is, we see a 12% performance
improvement in the NMP configuration versus the host only
configuration with a 64kB L2.

This evaluation demonstrates that our approach is effective
at optimizing for L2 misses. It highlights that the performance

Fig. 5. Performance results of the h2 benchmark in the host only and NMP
configurations with varying sizes for the L2 with four warm up iterations in
the default heap configuration.

benefits demonstrated in Fig. 2a were a result of reducing
the impact of inefficient utilization of the L2. However, this
coupled with the reduction in performance impact in Fig. 2b
also leads to the conclusion that utilizing warm-up iterations
also significantly improves the efficiency by which the L2
is utilized. In general, measuring performance after warm-up
iterations avoids measuring cache behavior from a cold-start
in which caches are not used as efficiently.

V. DISCUSSION

In this work, we propose and implement a means to reduce
the negative impact of Java’s mark-and-sweep algorithm on
efficient L2 cache utilization. We offload this costly compu-
tation to NMP in order to avoid accessing the cache hierar-
chy. This approach is designed to be minimally invasive by
taking advantage of emerging technologies through software
modification. By doing so, we demonstrated that we can
improve performance by 2× in benchmarks without warm-
up iterations, and we attribute this performance improvement
to the 2.3× reduction in L2 traffic. This work shows that the
pointer-chasing nature of the mark-and-sweep algorithm does
not utilize the L2 efficiently without warm-up iterations. We
address this by offloading the computation to a component
of the microarchitecture that does not negatively impact on-
chip caches. The performance advantage of this approach is
two-fold – (1) application cache accesses should hit more
frequently as important data will not be evicted prematurely,
and (2) the mark-and-sweep algorithm will not have to wait for
cache miss latency in addition to memory access latency on
values that likely will not be in cache. Our evaluation shows
that the impact of our technique is a function of L2 utilization
in host only configurations, so using warm-up iterations reduce
the impact of our technique.

We believe there is an open opportunity to evaluate whether
or not cache inefficiency in early warm-up iterations is a con-
sequence of cold caches or application behavior. In particular,
Java programs execute inside the Java Runtime Environment
(JRE), which performs many tasks at program invocation –
such as just-in time compilation, dynamic module loading,



etc. The JRE as a whole is a complex software structure,
and coming up with a more precise view of its behavior
throughout the duration of an application would lend itself
to other interesting architectural insights. We believe that a
further understanding of the JRE could lead to interesting
insights into hardware-driven modifications to the software.
This could help extend our techniques to other applications
as well, in Java and otherwise, that exhibit similar program
behavior.

To begin that discussion, we observe that one potential
contributing factor is the cold-start of the L2 cache in the
first warm-up iteration. While the first warm-up iteration may
not be of particular interest to users looking to optimize
long-running applications, such as databases or hosting an
application on a web server, there may be use cases that exhibit
similar behaviors. For example, if future work deems dynamic
module loading the primary contributing feature of garbage
collection during first warm-up iteration, then it makes sense
to perform similar offloading in applications that are bound
by dynamic module loading.

Improving performance in garbage collection remains an
important issue, in that long pauses due to full generation
collections stops the execution of the application in order
to execute automatic memory management. We believe that
prior work has produced highly effective specialized hardware
to accelerate specific garbage collection primitives, but the
ever-changing nature and wide breadth of software makes it
unlikely that these solutions will ever be fully adapted. Instead,
our technique attempts to be minimally invasive, and it is
flexible to be applied on other parts of the application and
to alternative use cases. As a result, we hope this work leads
to future opportunities in re-designing high-level software
protocols to better take advantage of emerging hardware and
its ability to improve performance without invasive hardware
changes.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments. This work was supported by NSF grant 1909715.

REFERENCES

[1] Upmem. https://www.upmem.com. Accessed: 2022-03-11.
[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung

Choi. A scalable processing-in-memory accelerator for parallel graph
processing. In Proceedings of the 42nd Annual International Symposium
on Computer Architecture, pages 105–117, 2015.

[3] David F Bacon, Perry Cheng, and Sunil Shukla. And then there
were none: A stall-free real-time garbage collector for reconfigurable
hardware. ACM SIGPLAN Notices, 47(6):23–34, 2012.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java
benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 169–190, 2006.

[6] Stephen M Blackburnα, Robin Garnerβ, Chris Hoffmannγ, Asjad M
Khanγ, Kathryn S McKinleyδ, Rotem Bentzurε, Amer Diwanζ, Daniel
Feinbergε, Daniel Framptonβ, Samuel Z Guyerη, et al. The dacapo
benchmarks: Java benchmarking development and analysis. 2006.

[7] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas.
A performance study of java garbage collectors on multicore archi-
tectures. In Proceedings of the Sixth International Workshop on
Programming Models and Applications for Multicores and Manycores,
pages 20–29, 2015.

[8] Stephen Cass. The 2018 top programming languages. IEEE Spectrum,
31:1, 2018.

[9] Jiwon Choe and Erfan Azarkhish. Brown-smcsim. https://github.com/
jiwon-choe/Brown-SMCSim, 2022.

[10] Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and R Iris
Bahar. Hybrids: Cache-conscious concurrent data structures for near-
memory processing architectures. In The 34th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 321–332, 2022.

[11] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R Iris
Bahar. Concurrent data structures with near-data-processing: An
architecture-aware implementation. In The 31st ACM Symposium on
Parallelism in Algorithms and Architectures, pages 297–308, 2019.

[12] Cliff Click, Gil Tene, and Michael Wolf. The pauseless gc algorithm. In
Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments, pages 46–56, 2005.

[13] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, and John Kim. Accelerating linked-list traversal through
near-data processing. In Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation, pages 113–124, 2016.

[14] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Ami-
rali Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating pointer
chasing in 3d-stacked memory: Challenges, mechanisms, evaluation. In
2016 IEEE 34th International Conference on Computer Design (ICCD),
pages 25–32. IEEE, 2016.

[15] Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei Liao,
Hai Jin, and Jingling Xue. A heterogeneous pim hardware-software co-
design for energy-efficient graph processing. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 684–
695. IEEE, 2020.

[16] Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim,
Sung Jun Jung, Hakbeom Jang, Tae Jun Ham, and Jae W Lee. Charon:
Specialized near-memory processing architecture for clearing dead ob-
jects in memory. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 726–739, 2019.

[17] Richard Jones and Rafael Lins. Garbage collection: algorithms for
automatic dynamic memory management. John Wiley & Sons, Inc.,
1996.

[18] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. A comprehensive java benchmark study on memory and
garbage collection behavior of dacapo, dacapo scala, and specjvm2008.
In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, pages 3–14, 2017.

[19] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent
data structures for near-memory computing. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, pages
235–245, 2017.

[20] Martin Maas, Krste Asanović, and John Kubiatowicz. A hardware
accelerator for tracing garbage collection. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA),
pages 138–151. IEEE, 2018.

[21] Thomas Perl. Python garbage collector implementations cpython, pypy
and gas, 2012.

[22] Tony Printezis. Garbage collection in the java hotspot virtual machine,
2005.

[23] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
Graphr: Accelerating graph processing using reram. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 531–543. IEEE, 2018.

https://www.upmem.com
https://github.com/jiwon-choe/Brown-SMCSim
https://github.com/jiwon-choe/Brown-SMCSim

	Introduction
	Background
	Methodology
	Evaluation
	Performance
	Cache Traffic
	LLC Variations

	Discussion
	References

