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We present a NUMA-aware concurrent data structure design based on a data-partitioned, concurrent skip 
graph indexed by thread-local sequential maps. Our design brings significant quantitative and qualitative 
improvements on NUMA locality, as well as reduced contention for synchronized memory accesses. Maps 
show up to 6x higher compare-and-swap (CAS) locality, up to a 68.6% reduction on the number of remote 
CAS operations, and an increase from 88.3% to 99% on the CAS success rate compared to a control 
implementation. Remote memory accesses are not only reduced in number, but the larger the NUMA 
distance between threads, the larger the reduction is. Relaxed priority queues implemented using our 
technique show similar scalability improvements, with provable reduction in contention and decrease in 
relaxation in one of our proposed implementations.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The increasing availability of computing cores on shared mem-
ory machines makes concurrent data structure design a critical 
factor for the design of high-performance applications or parallel 
systems. Non-blocking [28], linearizable [29] data structures are 
particularly appealing, since they can effectively replace sequen-
tial or blocking (lock-based) structures without compromising the 
semantics expected by users (systems designers). However, the de-
sign landscape for concurrent structures is changing: NUMA archi-
tectures emerge as a set of computing/memory “nodes” linked by 
an interconnect, making memory accesses within the same NUMA 
node cheaper than those made across different ones.

Under the usual assumption that threads are pinned to cores, 
we adopt the definition of local memory accesses as those oper-
ating in memory initially allocated by the current thread (under 
first-touch NUMA policy), and remote accesses as those accesses 
that are non-local. Note that our definitions are conservative, as 
data initially allocated by two different threads could indeed be lo-
cated within the same NUMA node. Our goal is to increase NUMA 
locality – the ratio of local over total memory accesses, and re-
search is very active in this area. Some approaches [7,11,38] focus 
on redesigning data structures with NUMA awareness, which is 
effective as we have full ability to exploit the structure’s inter-
nal features for the task. Unfortunately, complete redesigns can 
pose significant development and research efforts, unsuitable for 
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non-specialists. On the other hand, approaches such as [9] allow 
sequential structures to be “plugged-in” and benefit from NUMA-
aware concurrency, based on replicating the dataset among nodes, 
batching local operations, and coordinating batches as to minimize 
inter-node traffic.

A critical goal in concurrent data structure design is the reduc-
tion of contention for synchronized memory accesses, characterized 
when two or more threads operate concurrently on nearby loca-
tions in memory (e.g., same cache line). Synchronized operations 
introduce memory fences in the cache-coherence protocol, and op-
tionally with enriched semantics, such as get_and_increment()
(atomic increment) or compare_and_swap() (CAS) (conditional 
atomic exchange), so they are critical for lock-free data structure 
design. However, they also introduce high invalidation traffic in 
the cache-coherence system, particularly under contention. With 
NUMA, it is even more critical that contention is reduced, as such 
traffic happens across different memory domains, resulting in ex-
pensive access costs. Reducing contention can be attained by pro-
moting internal data parallelism for synchronized memory accesses, 
and our technique simultaneously promotes a reduction on remote 
memory accesses on NUMA.

1.1. Our contributions

We present a technique to promote NUMA-aware data paral-
lelism inside the concurrent data structure, bringing significant 
quantitative and qualitative improvements on NUMA locality, as 
well as reduced contention for synchronized memory accesses. 
Our design is based on integrating thread-local sequential maps 
with skip graphs ([4,23], described also in Sec. 3), while per-
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Fig. 1. A skip graph can be seen as a set of skip lists sharing their levels (one of them is highlighted). It contains 2i linked lists at each level i. With T threads, we have T /2i

of them working in each level-i linked list, separated by NUMA proximity, which increases data access parallelism, reduces contention, and increases NUMA locality.
forming a data partitioning scheme over the skip graphs for in-
creased NUMA locality. By “qualitative” increase in NUMA locality, 
we mean that remote memory accesses are not only reduced in 
number, but the larger the distance between threads in the system, 
the larger the reduction is (Sec. 11). At a high level, skip graphs 
can be viewed as multiple skip lists [40] that overlap, so we parti-
tion sub-components of skip graphs among threads as to promote 
higher NUMA locality and reduced contention (increased data par-
allelism). We design internal algorithms to take full advantage of 
the partitioned dataset in order to promote this goal. Note that, 
as originally defined, skip graphs are expensive data structures, so 
our technique is made viable in practice by incorporating exist-
ing thread-local indexing and well-documented laziness principles 
[10,11] into our design. As a proof-of-concept, we implemented 
maps and relaxed priority queues ([2,26,48,49]). Maps have been 
implemented with and without using laziness techniques, but al-
ways using thread-local indexing similarly to [11]. We are compet-
itive with state-of-the-art maps [10,11,14]: in some cases, we see 
80% increased performance, while in others, we see similar perfor-
mance to the faster running implementation. As part of our NUMA 
locality assessment, we observe a 6x higher CAS locality, a 68.6% 
reduction on the number of remote CAS operations, and an in-
crease from 88.3% to 99% of CAS success rate when using a lazy 
skip graph map implementation, as compared to our baseline data 
structure – a skip list subject to the same codebase, optimizations, 
and implementation practices. Memory access patterns are visual-
ized in Sec. 11, showing evident qualitative improvement.

We also contribute by implementing relaxed priority queues
[2,26,48,49], which return an element among the k smallest el-
ements in a set, rather than the absolute smallest. We not only 
use our data partitioning technique, which brings increased NUMA 
locality and reduced contention, but we consider a couple of al-
gorithmic variations that further harness key structural features of 
the skip graph. Additionally, we provide a formal argument indi-
cating that one of our two priority queue protocols is subject to 
smaller contention and it is also slightly less relaxed (that is, the 
removed elements are closer to the minimum element as defined 
in a strict priority queue).

2. Background: skip graphs

Fig. 1 shows a skip graph, which performs the role of our 
shared structure. A skip graph is composed of many singly-linked 
lists across multiple levels 0...MaxLevel. Each level i has exactly 2i

linked lists, and partitions the nodes in level i − 1 (for i > 0) in 
two sublists. In the level-0 list (called λ), all nodes are present. 
The two level-1 lists, 0 and 1, partition the level-0 list, and so 
on. In the original definition of skip graphs, aimed at peer-to-peer 
distributed applications, the specific partitioning is probabilistic. In 
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this paper, we have a partitioning scheme that will allocate nodes 
as to maximize data locality in the operations in our overall data 
structure (we describe our partitioning scheme below).

Skip lists [40] are similar to skip graphs, but the former contain 
one linked list per level, and the later 2i lists at level i. In a skip 
list, all elements belong to level 0, 1/2 of the elements at level 1, 
1/4 of the elements at level 2, and so on. Hence, a skip graph is 
a collection of overlapping skip lists: in Fig. 1, if we select exactly 
one linked list per level, we obtain a skip list. In Fig. 1, one skip list 
is highlighted, which we denote (λ, 0, 01) after the linked lists that 
must be chosen to define it, from the bottom level to the highest 
level. This way, 39 is in the skip list denoted by (λ, 1, 10), and 85 
is in the skip list denoted by (λ, 0, 00). Skip graph searches are 
skip list searches: start from a node’s top level, and follow high-
level pointers as far as possible before moving down levels. For 
example, from 16 we reach 63 by following the path 16 → 39, ↓, 
39 → 45, 45 → 62, ↓, 62 → 63. Note we only follow pointers 
in the skip list that 16 (our starting point) belongs to in its top 
level: (λ, 1, 10). We refer to any skip list within the skip graph 
as shared skip list, and any of the individual linked lists within the 
skip graph as a shared linked list. All elements belong to one shared 
skip list in all of its levels, so we can always perform a skip list 
search starting from that node’s top level, traversing only the skip 
list that the node belongs to in its top level. Hence, despite a richer 
structure, it is important to notice that skip graph searches are skip 
list searches.

3. Architecture

In this section, we start with a high-level view of our NUMA-
aware optimizations (our data partitioning scheme), following with 
implementation details and considerations about linearizability 
and correctness.

3.1. General architecture

Our overall architecture consists of an underlying skip graph 
[4], called a shared structure, and multiple thread-local, sequential, 
navigable maps called local structures, one per thread. The local 
structures allow insertions, removals, and contains operations to 
“jump” to positions in the shared structure near to where they 
will complete. The “jump” is done on thread-local memory, which 
contributes to reducing remote memory accesses since we avoid 
traversing long paths in the shared structure (distributed across 
multiple NUMA memory banks). Once in the shared structure, 
our data partitioning scheme over the skip graph promotes a fur-
ther reduction in remote memory accesses due to our partitioning 
mechanism. We call our overall structure layered structure given 
this architecture.
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We say nodes store elements, although we use these terms inter-
changeably. We further use the terms local nodes or shared nodes to 
refer to those nodes belonging to a local structure or to the shared 
structure, respectively. We now describe how the local and shared 
structures interact. When a thread inserts an element e, it first cre-
ates a shared node s in the skip graph, and then the thread’s local 
structure will map e → s. When a thread removes an element e, it 
first (i) logically deletes the shared node s in the skip graph; which 
causes the next two events, in arbitrary order: (ii-a) a “lazy” physi-
cal removal by traversing threads in the shared structure and (ii-b) 
a “lazy” physical removal of the local structure entry e → s by the 
thread that originally inserted the element.

3.2. Data partitioning

Even though the skip graph is shared by all threads, we limit 
where each thread operates on it, configuring a partition scheme. 
First, we establish that the maximum level of the skip graph is 
MaxLevel = �log(T )� − 1, where T denotes the number of threads 
in the system (named {T0 . . . T T −1}). While such a “low” MaxLevel
does not guarantee logarithmic searches by itself, our local struc-
tures perform the role of the missing higher levels as they “jump” 
to positions in the shared structure nearby where we expect op-
erations to complete. We then divide the skip graph lists in the 
following way: (i) each thread Ti has a sequence of MaxLevel bits 
called a membership vector, denoted by Mi ; (ii) Ti can only oper-
ate on the skip list characterized by the suffixes of Mi . That skip 
list is called the associated skip list of Ti , denoted Li . For example, 
consider Fig. 1. Because MaxLevel = 2, Ti ’s membership vector Mi
is a 2-bit string, say 01. Hence, Ti will always insert, remove, and 
search by following paths of the skip list Li = (λ, 0, 01). Note that 
since MaxLevel = �log(T )� − 1, each top-level linked list is shared 
by 2 threads, and any arbitrary level-i list is operated by at most 
T /2i threads.

A data partitioning is induced as we distribute threads over the 
skip graph as above, as we assume threads operate in different 
NUMA domains, and allocate memory within their domain. Fur-
thermore, we have the opportunity to increase NUMA locality by 
having threads pinned to “closer” hardware to share more lists 
in the skip graph. We do that by generating membership vectors 
according to physical NUMA features of the machine. For exam-
ple, consider a system with T = 16 threads (MaxLevel = 3) and 
2 NUMA nodes, each with 2 CPUs, each of those with 2 cores, 
each of those with 2 hyperthreads. Now, for any two threads Ti
and T j : (i) if Ti and T j run on different NUMA nodes, they get 
membership vectors with no common 3-bit suffix; (ii) if Ti and 
T j run on the same NUMA node, but on different cores, they get 
membership vectors with a common 1-bit suffix only; (iii) if Ti
and T j run on the same NUMA node and core, but on different 
hyperthreads, they get membership vectors with a common 2-bit 
suffix only; and (iv) if Ti and T j share the same hyperthread, they 
get membership vectors with a common 3-bit suffix. Now, on the 
level-3 linked lists, any contention relates to core-local data (and 
hopefully located on the core’s closest cache); on the level-2 linked 
lists, any contention relates to CPU-local data; on the level-1 lists, 
any contention relates to NUMA-local data. Not only we expect less 
contention in upper-level lists, because they are shared among less 
threads, but we expect this contention to relate to more local data. 
Further, any search that traverses the skip graph, as we discussed, 
is a skip list search. Hence, we first traverse core-local data, and if 
we go down a level, the target data cannot be located in the same core. 
Similarly, we then traverse CPU-local data, then NUMA-local data, 
and if we ever go down a level, the target data must be found re-
motely, where local/remote depend on the level in question. If we 
ever leave, say, a NUMA node, we never come back to it. The same 
applies to CPU-local data, or core-local data, and this happens as a 
33
direct consequence of our data partitioning mechanism, and our 
choice of data structure.

We have an automated mechanism that generates member-
ship vectors based on inspecting the system’s CPU/socket/domain 
structure, and we indeed verify less contention (substantial im-
provement on CAS success ratio) and more locality (visualized 
graphically) in Sec. 11. As indicated in the introduction, the above 
partitioning scheme not only provides a quantitative improvement 
on CAS and synchronized read locality, but also a qualitative im-
provement on those metrics: the larger the distance between two 
NUMA nodes, the bigger the reduction in remote accesses between 
threads pinned to those nodes. In fact, we also expect more local-
ity and less contention even when threads are not strictly pinned 
to cores, as discussed in Sec. 11.

3.3. Alternative shared structure

In order to further explore benefits and tradeoffs of skip graphs, 
we also created and tested a second shared structure, called a 
sparse skip graph. This structure is a skip graph where elements 
are made present in level i of any shared skip list with probability 
1/2i , just like in a regular skip list. The combination of skip graph 
partitioning and skip list refinement makes elements be present 
in level i of a particular linked list with probability 1/4i . As seen 
in Fig. 2, each of the level-1 lists “0” and “1” partition only 50% 
of the elements of “λ”, which would be selected at 50% chance 
independently. So, “0” and “1” each have about 25% of the ele-
ments in “λ”. Similarly, the level-2 lists “00” and “01” partition 
only 50% of the elements of “0”, each selected at 50% chance, 
independently. So, lists “00” and “01” each have about 6.25% of 
the elements in “λ”. With sparse skip graphs, only elements that 
reach the top level are added to the local structures. This is cru-
cial because the local structures, besides pointing to shared nodes 
nearby the target destinations, should also point to maximum-level 
nodes from which we can start an efficient search. Hence, using 
sparse skip graphs gives two immediate advantages: (i) the local 
structures are smaller; and (ii) the insertion and removal in the 
shared structure requires changes in less than MaxLevel levels. The 
tradeoff is that the starting point given by the local structures is 
not as close to the requested element compared to regular skip 
graphs.

3.4. Notation and data representation

The skip graph has an array that points to the first node of 
every list in the structure, called head. For each node s in the 
skip graph, we denote by s.next[i] its successor on the level-i
list that it participates (we also call it the level-i reference of s
). Each reference has a marked and a valid bit used for lazy
removal, and the functions s.getMark(i), getValid(i), s.
casMark(i, exp, new), and s.casValid(i, exp, new) oper-
ate on s.next[i]. The functions s.getMarkValid(i) and s.
casMarkValid(i, (mExp, vExp), (mNew, vNew)) operate on 
marked and valid bits of s.next[i] simultaneously. As the ad-
dress space on the x64 architecture is currently restricted to 48B, 
we have 16 bits available for flags in each word, so we can use 
one bit to implement marking while still using single-word CAS 
operations.

The local structures have their local nodes store an element 
identifier (a “key”) and a reference to a shared node (a “value”). 
The local structures use these to map elements to shared nodes. 
A local node l’s key (resp. value) is obtained by calling l.getKey
() (resp. l.getValue()). Note that the “value” (the shared node) 
always itself contains the same key as the local node l. We as-
sume that the local structures are navigable, and we can tra-
verse them by calling l.getPrev() and l.getNext() on a local 
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Fig. 2. A sparse skip graph: elements are in level i of any skip list with probability 1/2i .
node. The local structure for thread i, a C++ std::map, is de-
noted by localstructures[i]. Each has an auxiliary hash table 
hashtable[i], allowing threads to consult a fast hashtable [3]
before consulting a slower map. Therefore, our local structures, 
in practice, are implemented with two complementary, sequential 
data structures.

3.5. Laziness

State-of-the-art concurrent data structures rely heavily on post-
poning internal work until it is absolutely needed, in the hope it 
becomes unnecessary. We implemented a lazy variant of our lay-
ered structure, employing this principle as: (i) The insertion of 
shared nodes in the skip graph is done in the level 0 first, and the 
inserting thread only completes the insertion at upper levels when 
the node in question is requested to start a search operation. (ii) 
Removals are performed logically by “invalidating” a shared node, 
and nodes are marked for physical removal only when the threads 
that originally inserted those nodes find them invalidated after a 
minimal commission period for which they exist in the structure. 
As the physical removal of a node is expensive, the commission 
period is intended to have this operation done only when neces-
sary. Experimentally (Sec. 11), we found that a commission pe-
riod proportional to the number of threads, say 350000 · T cycles, 
for instance, performs very well under high-contention without in-
troducing too much overhead in low-contention (in the latter, a 
longer commission period could leave the data structure much 
larger at times). (iii) We implemented an optimization that re-
moves chains of marked shared nodes with a single CAS operation, 
and, related to laziness, we do that only when substituting a chain 
of marked shared nodes with an inserting node. Although this pro-
tocol has the potential to leave too many marked nodes in the data 
structure, we verified experimentally that the number of traversed 
shared nodes per operation is less than in a skip list up to 96 
threads.

3.6. Physical removal

We now expand our discussion of valid and invalid nodes to 
a more formal definition. Each node has a valid bit and a marked
bit in each successor reference in the skip graph. When a node’s 
level-0 reference marked (resp. valid) bit is set, we say the shared 
node is marked (resp. invalid). The concepts of unmarked and valid
are obvious. In the non-lazy version, we do not use the valid
bit, and in that case an unmarked shared node indicates presence 

in the abstract key set, while a marked shared node indicates a 
logically deleted node.

In the lazy version, an unmarked, valid node indicates presence 
in the abstract set; an unmarked, invalid node indicates absence 
from the abstract set (logically deleted), but also that the pro-
cess of physically unlinking the node has not started; a marked 
node can only be invalid, and in that case the process of physi-
cally unlinking is ready to start. Each shared node s has a field 
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s.allocTimestamp, set at shared node construction, used to cal-
culate when a node’s commission period has elapsed, thus making 
it a candidate for physical removal (see the discussion on lazi-
ness, above). The removal process happens in distinct phases: (i) 
A thread that traverses the data structure will mark a shared 
node with an expired commission period only if such node has 
been inserted by the thread in question (recall that “marking” 
nodes means marking its successor reference at level 0). (ii) When 
threads remove marked nodes from their local structures, they also 
mark upper-level successor references in order to promote physi-
cal removal of the shared node in the upper levels as well. As in 
many cases logically deleted nodes have not been inserted in upper 
levels, this additional reference marking is not always necessary 
or complete. (iii) Finally, traversing threads perform the physical 
cleanup using the relink optimization discussed below. Note that 
(i) and (ii) are synchronization operations done in local memory, 
and we consider this protocol for maximal locality as one of our 
implementation-related contributions.

As in textbook skip lists [27], we indicate willingness to phys-
ically remove a node s by marking its s.next[i] references for 
all levels i . . . 0 the node belongs to. Within a level i, searches 
performed on behalf of insertions and removals physically remove 
nodes with marked next[i] references by employing a single CAS 
per node. In contrast, both our skip lists or skip graphs remove se-
quences of marked references with a single CAS per sequence, a 
trivial optimization that we denote by relink optimization. The cor-
rectness of this protocol is trivial when we consider that marked 
references are immutable.

4. Related work

Applications, particularly DBMSs, are not only concerned with 
data placement (somewhat related to our goals), but also with task 
scheduling (a non-goal here). Some approaches consider NUMA lo-
cality in the query evaluation and planning [19,33,34], and others 
do at the OS level [47]. We have a simple approach to data place-
ment: threads index their inserted elements locally and the dataset 
is effectively partitioned; our focus is on the data access pattern. 
Systems such as [44] are particularly concerned with data ac-
cess pattern issues, as their operations are mostly uniform among 
threads. We do not discuss task scheduling, as we do not rely 
on approaches such as delegation [6,32] or flat-combining [15,25], 
which do bring concerns related to this issue because of the non-
uniform work division among threads.

Efficient data shuffling policies have been examined in [18,36], 
and in [5,12], the latter not only considering remote memory ac-
cess latency, but also contention. This kind of work is more relevant 
for us, as improving the data access pattern in order to minimize 
contention is a primary goal in NUMA settings; minimizing latency 
is an additional goal for our work in particular. Techniques such as 
replication, interleaving, etc., mentioned in these papers, particu-
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larly in [12,36], are not used here, but look appealing for future 
work.

4.1. Skip lists and skip graphs

Skip lists first appeared in [41], although [17,30,35] were most 
widely discussed in the literature [27]. Skip lists have also been 
used to implement priority queues, either exact [8,42,43] or with 
a relaxed definition [2,26,48,49]. SkipNets [23] are similar (if not 
identical) to skip graphs, proposed relatively at the same time. We 
consider those equivalent, and equally applicable. Skip graph varia-
tions, such as in [21], typically address issues related to distributed 
systems, such as node size; we are aware of a single concurrent 
implementation in shared memory in [37], although it is lock-
based, in contrast with both of our lock-free variants. Our imple-
mentation relies heavily on laziness, as we postpone much of the 
internal work until they are absolutely needed. The “No Hotspot” 
skip list [10] uses similar lazy principles, albeit with a different 
protocol. The “Rotating” skip list [14] has a novel construction 
(“wheels”) meant to improve cache efficiency and locality, and also 
constitutes a modern, state-of-the-art implementation.

4.2. NUMA awareness and layered design

The work presented in [13] gives a systematic approach to pro-
vide NUMA-awareness to locks. Tailor-made data structures for 
NUMA systems, such as [7,20,38] have also been developed, using 
(now) standard techniques such as elimination [24] and delega-
tion [6]. We think that “blackbox” approaches, such as in [9], are 
interesting as they relieve systems programmers from “customiz-
ing” their data structures for NUMA, a notoriously complicated 
task for non-specialists (and specialists alike [27]). NUMASK [11]
is an interesting skip list that uses its higher levels as a hierarchi-
cal “index” to the bottom-level list, which stores the dataset. In our 
case, the dataset is located in a structure of its own, a multi-level 
skip graph. This allows for our data partitioning mechanism, de-
signed to (i) reduce non-local NUMA traffic, and particularly avoid 
traversals that navigate back and forth across NUMA nodes; and 
(ii) reduce contention by creating areas within the shared struc-
ture where only subsets of threads operate. Our thread-local in-
dexing, similarly, is more detached from the dataset, and could 
be implemented with any sequential, navigable map. In our im-
plementation, for example, our map is actually a combination of a 
search tree and a hash table. Finally, our indexes are not replicated, 
but partitioned. Even with our optional load balancing mechanism 
in place, threads donate nodes but do not replicate their index-
ing. Apart from differences of granularity and function, the idea of 
separating thread-local views and shared views appeared in [1], al-
though their approach is more akin to combining, as they eventu-
ally merge thread-local views into the shared structure from time 
to time.

A brief announcement (i.e. not a full paper) related to this work 
was originally published in [45], and substantial new material has 
been incorporated in [46]: lazy skip graphs (Sec. 3.5), load bal-
ancing (Sec. 9), the commission period policy (Sec. 3.5), relaxed 
priority queue algorithms (Sec. 10) and their analysis (Sec. 10.1). In 
addition to [46], this journal version includes (i) a complete, formal 
analysis of our priority queue algorithms; (ii) a detailed discussion 
of all the algorithms in our protocol (insertion, removal, search, 
PQ removal); (iii) further details on the load balancing protocol; 
(iv) more experimental results, now including locality experiments 
for layered skip graphs, lazy-layered skip graphs, and sparse skip 
graphs. We also provide detailed measurements on cache misses, 
and performance/locality results for read-heavy workloads.
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Algorithm 1 bool Layered::insert(K key, V value).
1: SharedNode result = hashtables[threadId].find(key)
2: if result �= null then
3: bool returnValue = false
4: if SG::insertHelper(result, returnValue) then
5: return returnValue
6: SharedNode insertedSkipNode = null
7: if SG::lazyInsert(key, insertedSkipNode) then
8: localstructures[threadId].insert(key, insertedSkipNode)
9: hashtables[threadId].insert(insertedSkipNode)

10: return true
11: return false

Algorithm 2 bool SG::insertHelper(SharedNode toInsert, ref bool 
returnValue).

1: while true do
2: if not toInsert.getMark(0) then
3: if toInsert.getMarkValid(0) == (false, valid) then � Duplicate
4: bool returnValue = false
5: return true
6: if toInsert.casMarkValid((false, invalid), (false, valid)) then �

Flipped valid
7: returnValue = true
8: return true
9: else

10: localstructures[threadId].erase(toInsert.getKey())
11: hashtables[threadId].erase(toInsert.getKey())
12: break
13: return false

5. Insertion

The main operations supported by our layered skip graphs are 
insertion, removal, and containment. In this section, we describe 
the insertion algorithms, pointing out relevant details in the code, 
and providing linearization arguments as the various subroutines 
are described. The linearization details are given below, marking 
the linearization point descriptions with I-i, I-ii, etc.

Algorithms 1, 2, and 3 show the insert operation for key. In 
insert() (Algorithm 1), if the thread finds a reference to a shared 
node with the goal key (call it result), it invokes insertHelper
() (Algorithm 2), which returns true to indicate to insert() that 
the insertion was completed. The returnValue parameter, which 
is populated inside insertHelper(), is set to false to indicate 
that we found a duplicate node, and set to true to indicate that 
a logical insertion occurred by flipping the valid bit of the pre-
existing node found.

Specifically, insertHelper() atomically checks result’s
marked and valid bits and finishes the operation if: (I-i) result

was seen as an unmarked valid node, so we linearize a failed 
insertion right before our check (Algorithm 2, line 3). (I-ii) result

was atomically changed from invalid to valid, so we linearize 
the successful insertion right at that time (Algorithm 2, line 6). If 
insertHelper() cannot finish the operation (by returning false), 
result got marked, so (i) we clean the thread’s local structure 
(Algorithm 2, lines 10 and 11); and (ii) we call lazyInsert()
(Algorithm 3, line 7), which will complete the insertion.

The procedure lazyInsert() (Algorithm 3) adds the node at 
the bottom level of the skip graph. At line 5, it starts by call-
ing getStart() (Algorithm 4, described just below), which finds 
the closest preceding, unmarked shared node pointed by the lo-
cal structure, but one that also has been fully inserted, lazily, at 
all levels beforehand. We call this node currentStart. We then 
perform a search in line 7, starting from currentStart, by call-
ing lazyRelinkSearch() (Algorithm 5, Sec. 6). This procedure 
searches for the bottom-level predecessor for the new element, so 
we can eventually perform physical insertion at line 14 with a CAS 
operation.
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Algorithm 3 bool SG::lazyInsert(T key, ref SharedNode inserted-
SkipNode).

1: Array predecessors[MaxLevel], middle[MaxLevel], successors[MaxLevel]
2: � Shared node being inserted in the bottom level only
3: SharedNode toInsert
4: � Search the local structure and get the closest starting point
5: SharedNode currentStart = getStart(key)
6: while true do
7: if SG::lazyRelinkSearch(key, predecessors, middle, successors, currentStart)

then
8: returnValue = false
9: if SG::insertHelper(successors[0], returnValue) then

10: return returnValue
11: else
12: continue
13: toInsert.setNext(0, successors[0])
14: if not predecessors[0].casNext(middle[0], toInsert) then
15: updateStart(currentStart)
16: continue
17: insertedSkipNode = toInsert
18: return true

In case the invocation of lazyRelinkSearch() finds an un-
marked shared node with the goal key, this node will be pointed 
by successors[0]. In that case (I-iii) a call to insertHelper()
(line 9) will be our linearization point, just like it happened in 
our previous discussion of Algorithm 1. If that call returns false, 
successors[0] became marked, so we retry the search at line 12. 
(I-iv).

In case the invocation of lazyRelinkSearch() does not find 
an unmarked shared node with the goal key, we try to insert 
the node on line 14. In that case (I-iv), if the attempt fails, we 
retry the search until either (I-iv-a) we link the new shared node 
in line 14, so we linearize at the point the CAS succeeded, not-
ing that shared nodes are allocated as unmarked and valid; or 
(I-iv-b) find another unmarked shared node with the goal key, 
reverting to case (I-i). The lazy insertion only happens at level 
0. In line 15, updateStart (Alg. 13, Appendix A) makes sure 
that currentStart is unmarked, otherwise it traverses the local 
structure backwards and updates currentStart to the closest un-
marked shared node seen.

As briefly mentioned before, the procedure getStart() (Al-
gorithm 4) finds an unmarked shared node pointed by the local 
structure that closest precede key, but one node that has been 
fully inserted at all levels of the skip graph lazily. It performs an 
initial search at line 1, then traverses the tree backwards (line 18) 
for as long as the shared nodes pointed to by the local structure 
are found marked. Along this traversal, if we find a suitable candi-
date, but one whose insertion in the upper levels of its shared skip 
list has not been completed, we call finishInsert() (Alg. 14, 
Appendix A) to try to complete the insertion of such potential pre-
decessor right away. This call is done at line 6 (still talking about 
Algorithm 4), and it can fail if the node gets marked before all 
levels are linked. In that case we continue our backward traversal 
on getStart(). Otherwise, we found our predecessor node, and 
getStart() can return it.

One problem with completing the insertion of our potential 
returned predecessor, in line 6 of Algorithm 4, is that we need 
another predecessor in order to complete an insertion. The call to 
updateStart() (a subroutine described in Alg. 13, Appendix A) 
finds such “predecessor’s predecessor,” but does so without try-
ing to finish insertions itself, or the whole getStart() procedure 
would be ill-defined. In other words, updateStart() is a simpli-
fied version of getStart() that does not finish insertions lazily, 
and ignores nodes that are not fully inserted. With the “predeces-
sor’s predecessor,” we can complete the insertion of the predeces-
sor node returned by getStart().

Note that insertHelper() can continuously loop only when 
(i) getMark(0) continuously changes to true inside the block of 
36
Algorithm 4 LocalStructureIterator LocalStructure::getStart(K key).
1: iterator = localstructures[threadId].getMaxLowerEqual(key)
2: while iterator �= null do
3: SharedNode sharedNode = iterator.sharedNode
4: if not sharedNode.getMark(0) or not sharedNode.getMark(MaxLevel) then
5: if not sharedNode.inserted then
6: if SG::finishInsert(sharedNode, updateStart(iterator)) then
7: return iterator � Node has just been fully inserted
8: else
9: � Erase below does not invalidate the iterator

10: localstructures[threadId].erase(key)
11: hashtables[threadId].erase(key)

12: else
13: return iterator � Node already found fully inserted

14: else
15: � Erase below does not invalidate the iterator
16: localstructures[threadId].erase(key)
17: hashtables[threadId].erase(key)

18: iterator = iterator.getPrev()

19: return iterator

line 2, indicating continuously successful insertions and removals; 
or (ii) we continuously fail to execute line 6, indicating continu-
ously successful insertions. In addition, Algorithm 3 can continu-
ously loop only when other insertions and removals are succeed-
ing, thus changing the state of the predecessors, middle, and 
successor arrays inside lazyRelinkSearch() (called in line 7
in lazyInsert()). The main insertion procedure relies on Algo-
rithms 2 and 3, and otherwise contains no loops. In addition, the 
procedure getStart(), also used in Algorithm 3, cannot run con-
tinuously, as it navigates through a non-concurrent data structure 
that only decreases in size when marked nodes are identified and 
removed. Hence, the whole insertion procedure is lock-free.

6. Search

All of the supported operations by the layered skip graph, 
not only containment, rely on two internal search procedures: 
lazyRelinkSearch() in Algorithm 5, and retireSearch() in 
Algorithm 6. While insertions use lazyRelinkSearch(), remove 
and contains operations will use retireSearch(), a slightly 
quicker variant that does not keep track of predecessors, 
successors, and middle. Both algorithms are presented below. 
The algorithms in this subsection are slight variants from their 
skip list counterparts, and are provided for completeness; lineariz-
ability and progress (lock-freedom) arguments are very similar to 
those discussed in [17,30,31].

Our first search procedure, lazyRelinkSearch(), is pre-
sented below in Algorithm 5. It identifies, at all levels: (A) which 
nodes should precede toInsert (referenced in predecessors);
(B) which nodes should succeed toInsert (referenced in
successors); and (C) which nodes, referenced in the middle
array, had predecessors[i].getNext(i) right at the mo-
ment each predecessor predecessor[i] was identified. Between 
predecessors[i] and successors[i] we have a sequence of 
nodes with their level-i references marked. We hope these nodes 
get replaced, through a single CAS operation, with toInsert (hence 
implementing our relink optimization protocol, Sec. 3.6). Impor-
tantly, during this process, line 4 uses checkRetire() (Alg. 15, 
Appendix A.1) to check if nodes are invalid and their commission 
period has expired, in which case these nodes get marked.

Our second search procedure, retireSearch(), is presented 
below in Algorithm 6. This algorithm is employed by contains and 
remove operations in order to search for unmarked shared nodes 
with a goal key, starting from currentStart. The algorithm is 
a simplification of lazyRelinkSearch(), presented above, as it 
does not keep track of predecessors or successors as the structure 
is traversed.
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Algorithm 5 bool SG::lazyRelinkSearch(K key, SharedNode[] prede-
cessors, SharedNode[] middle, SharedNode[] successors, LocalStruc-
tureIterator currentStart).

1: current = null
2: for level = MaxLevel → 0 do
3: current = originalCurrent = previous.getNext(level)
4: while current.getMark(0) or current.checkRetire() do
5: current = current.getNext(level)

6: while current.getKey() < key do
7: previous = current
8: current = originalCurrent = previous.getNext(level)
9: while current.getMark(0) or current.checkRetire() do

10: current = current.getNext(level)

11: predecessors[level] = previous
12: middle[level] = originalCurrent
13: successors[level] = current

14: return (successors[0].getKey() == key and not successors[0].getMark(0))

Algorithm 6 bool SG::retireSearch(K key, SharedNode found, Local-
StructureIterator currentStart).

1: previous = currentStart.sharedNode
2: current = null
3: for level = MaxLevel → 0 do
4: current = previous.getNext(level)
5: while current.getMark(0) or current.checkRetire() do
6: current = current.getNext(level)

7: while current.getKey() < key do
8: previous = current
9: current = originalCurrent = previous.getNext(level)

10: while current.getMark(0) or current.checkRetire() do
11: current = current.getNext(level)

12: if current.getKey() == key and not current.getMark(0) then
13: found = current
14: return true
15: return (successors[0].getKey() == key and not successors[0].getMark(0))

Algorithm 7 bool Layered::contains(K key).
1: SharedNode result = hashtables[threadId].find(key)
2: if result �= null then
3: if not result.getMark(0) then
4: return (result.getMarkValid(0) == (false, valid))
5: else
6: localstructures[threadId].erase(key)
7: hashtables[threadId].erase(key)

8: return SG::contains(key)

The search algorithms given above are very similar to their skip 
list counterparts discussed in [17,30,31]. Their linearization points 
follow exactly the arguments in the references just provided, not-
ing that skip graph searches are identical to skip list searches.

7. Containment

The containment operation supported by the layered skip graph 
is described in this section. The linearization points are noted in 
locations marked with indicators C-i, C-ii, etc. Our main proce-
dure, contains() (Algorithm 7), starts trying to locate an ele-
ment through the local hashtable. If an unmarked, valid node is 
found (line 4), we linearize a successful contains at this point (C-
i). Otherwise, we call SG::contains() (Algorithm 8), which will 
complete the procedure.

The algorithm SG::contains() (Algorithm 8) starts by calling 
getStart() (Algorithm 4), which finds the closest preceding, un-
marked shared node pointed by the local structure (line 2). We 
call this node currentStart. We then perform a search in line 4, 
starting from currentStart, using our procedure retireSearch
() (Algorithm 6). (C-ii) If an unmarked shared node with the goal 
key is not found, we linearize a failed contains operation at the 
time we find the element succeeding that key in the bottom level. 
(C-iii) If an unmarked shared node with the goal key is found: (C-
37
Algorithm 8 bool SG::contains(K key).
1: � Search the local structure and get the closest starting point
2: currentStart = getStart(key) alg:sgContains:getStart
3: � If an unmarked shared node is not found, the element cannot exist
4: if not retireSearch(key, found, currentStart) then
5: return false
6: return (result.getMarkValid(0) == (false, valid))

Algorithm 9 bool Layered::remove(T key, U value).
1: SharedNode result = hashtables[threadId].find(key)
2: if result �= null then
3: bool returnValue = false
4: if SG::removeHelper(result, returnValue) then
5: return returnValue
6: return SG::lazyRemove(key)

Algorithm 10 bool SG::removeHelper(SharedNode toRemove, ref
bool returnValue).

1: while true do
2: if not toRemove.getMark(0) then
3: if toRemove.getMarkValid(0) == (false, invalid) then � Non-existent
4: bool returnValue = false
5: return true
6: if toRemove.casMarkValid((false, valid), (false, invalid)) then � Flipped 
valid

7: returnValue = true
8: return true
9: else

10: localstructures[threadId].erase(toRemove.getKey())
11: hashtables[threadId].erase(toRemove.getKey())
12: break
13: return false

iii-a) if we verify the node is unmarked and valid (test of line 6), 
we linearize a successful contains at that time. (C-iii-b) Otherwise, 
we linearize the failed contains at the earliest moment among the 
time we failed to verify the node was unmarked and valid (line 6), 
or right after the time the node became unmarked.

These algorithms are also lock-free: the only loop involved in 
the contains procedure is located in the lock-free retireSearch
(), discussed in the previous section.

8. Removals

Removals are the final major operation supported by our lay-
ered skip graphs. Removals are similar to insertions, and are per-
formed with three analogous algorithms. Our discussion follows 
below, with linearization points marked with indicators R-i, R-ii, 
etc.

Algorithms remove() (Algorithm 9), SG::removeHelper()
(Algorithm 10), and SG::lazyRemove() (Algorithm 11) imple-
ment the remove operation for key. In remove() (Algorithm 9), if 
the thread finds a reference to a shared node with the goal key, it 
calls removeHelper() (Algorithm 10). This call returns true only 
if: (R-i) We found an unmarked, invalid node, so we linearize a 
failed removal right at that time. There cannot exist another un-
marked, valid node in this case, which justifies our linearizability. 
(R-ii) We successfully unset the valid bit of an unmarked, valid 
node, so we linearize the successful removal right at that time as 
well. If removeHelper() returned false, the shared node previ-
ously found is marked, so (i) we clean the thread’s local structure 
(Algorithm 10, lines 10 and 11); and (ii) we call lazyRemove()
(Algorithm 11), which will complete the removal.

The algorithm lazyRemove() (Algorithm 11) starts by calling 
getStart() (Algorithm 4), which finds the closest preceding, un-
marked shared node pointed by the local structure (line 2). We 
call this node currentStart. We then perform a search in line 5, 
starting from currentStart and: (R-iii) If an unmarked shared 
node with the goal key is found (call it found), then a call to 
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Algorithm 11 bool SG::lazyRemove(SharedNode current).
1: � Search the local structure and get the closest starting point
2: currentStart = getStart(key)
3: while true do
4: � If an unmarked shared node is not found, the element cannot exist
5: if not retireSearch(key, toRemove, currentStart) then
6: return false
7: returnValue = false
8: if SG::removeHelper(successors[0], returnValue) then
9: return returnValue

removeHelper() (line 8) will define our linearization, just like 
our previous discussion of Algorithm 9. If that call returns false, 
found became marked, so we retry the search. (R-iv) No unmarked 
node with the goal key has been found, so in that case we linearize 
a failed removal at the time we find the element succeeding that 
key in the bottom level.

Note that removeHelper() can continuously loop only when 
(i) getMark(0) continuously changes to true inside the block of 
line 2, indicating continuously successful insertions and removals; 
or (ii) we continuously fail to execute line 6, indicating continu-
ously successful insertions. In addition, lazyRemove() can con-
tinuously loop only when other insertions and removals are suc-
ceeding, thus changing the state of the predecessors, middle, 
and successor arrays inside retireSearch() (called in line 5
in lazyRemove()). The main removal procedure relies on Algo-
rithms 10 and 11, and otherwise contains no loops. In addition, 
the procedure getStart(), also used in Algorithm 6, cannot run 
continuously, as it navigates through a non-concurrent data struc-
ture that only decreases in size when marked nodes are identified 
and removed. Hence, the whole removal procedure is lock-free.

9. Load balancing

We have an optional mechanism for handling unbalanced work-
loads, which addresses the following scenarios: (i) Some threads 
may only insert, while others only perform removals/contains. (ii) 
Distinct groups of threads may insert in distinct partitions of the 
element space. Both scenarios are problematic because threads do 
not necessarily find good starting points for their search operations 
if their local structures are empty or skewed towards a partition 
of the element space. Our load-balancing mechanism is based on 
having threads donate a fraction of their nodes inserted in the 
shared structure so they are added to local structures of other 
threads. A background thread takes into account the number of 
inserted elements announced by every worker thread, and, based 
on those numbers, continuously indicates to each worker thread 
the fraction of inserted nodes that are requested for donation. The 
worker threads place such fraction of inserted nodes into donation 
queues (one per worker thread), which are collected by the back-
ground thread and distributed uniformly among all other worker 
threads. Threads inspect receiving queues for incoming nodes, and 
add them into their local structures. Donated nodes are deleted 
in the local structures just like non-donated nodes, when they are 
seen as marked while a thread traverses its local structure.

9.1. Implementation details

In order for the background thread to determine how many 
pointers each worker thread should donate to other threads, it 
must consider the number of times each worker thread has suc-
cessfully inserted into the shared structure. The more successful 
insertions a worker thread completes, the more pointers it has in 
its local structure, and the more pointers it should donate to other 
threads. Each worker thread maintains atomic counters indicating 
the number of successful insertions (updated every 100 operations 
to amortize the cost of atomic updates). The background thread will 
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Fig. 3. Donation % (y) vs. insertion % (x), assuming 8 threads.

update global fractions indicating the percentage of inserted nodes 
that should be donated by each worker thread. The actual dona-
tion happens through two concurrent, wait-free, single-producer, 
single-consumer queues. We optimized the design of those queues 
to take advantage of the fact that we only have a single pro-
ducer and a single consumer operating over them. For each thread, 
one queue receives donations from the background thread (incom-
ing queue), and the other queue sends donated pointers from the 
worker thread to the background thread (outgoing queue). These 
latter pointers will then be redistributed to other worker threads 
by the background thread.

The donation percentage is calculated as follows: if a worker 
thread Ti announces the insertion of Ii elements out of a total of 
IT = ∑

{0≤i<T } Ii elements inserted, define qi = Ii/IT . If qi ≤ 1/T , 
then Ti donates the fraction qi of its elements; otherwise, it do-
nates p · [((T · qi) + qi − 1)/(T · qi)] of them, where p is an “ag-
gressiveness factor” varying between 0.5 and 1. The value 1/T is 
the “expected fraction”, or the fraction of total insertions each 
thread would have inserted if all threads were inserting under sim-
ilar uniformly-distributed loads. Note that if the only goal of this 
protocol was to ensure that all threads have equally sized local 
structures, it would not make sense for a thread with an actual 
fraction less than or equal to the expected fraction to donate at 
all. However, our protocol also seeks to ensure an even distribu-
tion of keys within each thread’s local structure. Then, it is possible 
that all threads could be inserting equally but only within distinct 
ranges of the key space. Therefore, all threads inserting less than 
or equal to the expected fraction still donate a percentage of their 
pointers. This ensures that there will always be some amount of 
pointer redistribution across threads to help expand the key range 
of each local structure.

If a thread’s actual fraction is greater than the expected frac-
tion, that thread is inserting more than its fair share of nodes into 
the shared structure. Fig. 3 illustrates the donation percent associ-
ated with a thread considering its actual inserting percentage (qi

for worker thread i in our formula), under different aggressiveness 
factors p, varying between 0.5 and 1, in a system with 8 threads.

Donated nodes have been inserted in their bottom-level by a 
thread Ti , while they might be inserted in upper levels by a thread 
T j, j �= i. We are currently working on delegating the creation of 
upper levels to the original thread Ti , avoiding to cross NUMA 
nodes when building up those levels. On lazy implementations, 
with levels built only when needed, the impact of this problem 
is reduced.
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10. Priority queues

Our layered structure can implement priority queue ADTs (and 
relaxed versions of it) in addition to sets/maps. Similarly to [8,
42,43], we rely on marking elements in the bottom level of the 
(now) skip graph in order to logically delete elements. We con-
sider two relaxed priority queue approaches [26,48,49]: (i) the use 
of the spraying technique of [2] over skip graphs; and (ii) a custom 
protocol that traverses the skip graph deterministically, marking 
elements along this traversal. We consider (ii) as one of the con-
tributions of this paper.

Regarding option (i), the main idea of [2] is to disperse threads 
over the skip list bottom level through a random walk called a 
spray. If we apply the technique to a skip graph, each thread 
Ti would navigate only through its associated skip list Li . We 
see several advantages of performing spray operations over skip 
graphs rather than skip lists. Our partitioning scheme will still 
incur in better memory locality and reduced contention, as dis-
cussed before. On the other hand, we show that spraying over skip 
graphs has a slightly bigger removal range (same asymptotically, 
but higher nevertheless, proved in Sec. 10.1). Related to option (ii), 
we implement a deterministic traversal in the skip graph, mark-
ing elements along the way. Informally, a thread Ti starts at the 
highest level of its associated skip list, traverses marked nodes, and 
attempts to mark at the current position. If the attempt succeeds, a 
node has been logically deleted, otherwise the thread moves down 
a level, traverses marked nodes, and proceeds similarly. At level 
0, two mark attempts are tried, and upon failing the second one, 
the process is restarted (Algorithm 12). We prove in Sec. 10.1 that 
the number of CAS operations required to logically delete a se-
quence of T nodes in our deterministic protocol is 2T (so each 
node is subject to contention by 2 threads in expectation). In either 
approach, our layered structure gives the opportunity to perform 
physical cleanup of a whole prefix of the local structure containing 
logically deleted nodes, so many nodes could be removed at once 
at cost comparable to a single removal.

In Sec. 10.1, we give formal arguments that quantify (A) the re-
moval range of spraying operations in skip lists and skip graphs; 
and (B) the contention anticipated for approaches (i) and (ii) dis-
cussed above, over skip graphs.

10.1. Analysis of spray operations on perfect skip graphs

In this section, we provide formal arguments related to the per-
formance of spray operations as in [2] as applied over skip graphs. 
Part of the analysis presented here closely follows the aforemen-
tioned paper, while others are particular to skip graphs. Recall that 
T is the number of threads in the system. We will assume that 
log T is integral, and that for the number of nodes N in our skip 
graphs or lists, N ≥ T holds. When convenient we will explicitly 
assume T = 2n , where n ≥ 1. The particular variant of skip graphs 
we refer to, throughout our analysis, is the one where in each level 
i, where 0 ≤ i ≤ log T − 1, there are 2i lists as described in Sec. 3.

10.1.1. Reach of skip graph spraying
In this section, we discuss the removal range of spray opera-

tions over skip graphs. Lets start with a few general definitions 
used throughout our proofs:

Definition 1. A skip graph is perfect if the absolute value of the 
difference in the positions of any two consecutive nodes on level i
is 2i , for all 0 ≤ i ≤ log T − 1.

The operation SPRAY(H,L,D)j defines a random walk starting 
at height H, i.e., at the head of a list j at level H of the skip graph. 
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The walk continues forward to the right a uniformly random num-
ber of consecutive nodes chosen from [0,L] then moves down the 
skip graph D levels. This is repeated until we reach the bottom list 
and (possibly) walk forward to the right one last time. Thus the 
walk ends at position x in the bottom list. We are interested in 
characterizing the probability that any SPRAY operation starting 
from any j of the 2log T −1 lists of the maximum level of the skip 
graph lands on position x in the bottom list.

Definition 2. Let j be any of the 2log T −1 lists of the maximum 
level of a perfect skip graph, and let x be the position of any node 
in the perfect skip graph. Then F(x)j denotes the probability that 
for fixed H, L, and D, SPRAY(H,L,D)j lands on position x in the 
bottom list.

In the proof of the theorem below, we closely follow [2] with 
appropriate changes and modifications for the perfect skip graph. 
We assume w.l.o.g. that log T is odd.

Theorem 1. Fix H= logT− 1, L= logT, and D= 1. Then for any posi-
tion x, F(x)j ≤ 1

T .

Proof. Let j be any of the 2log T −1 lists of the maximum level of 
a given skip graph, and let x be the position of any node in the 
perfect skip graph. Let pos j denote the position of the head of list 
j. If x < pos j , then trivially F(x)j = 0. Hence, we assume w.l.o.g. 
x ≥ pos j . Furthermore let x̄ := x − pos j . We simplify the exposition 
and show that F(x)j ≤ 1

T by making our arguments on x̄. Note that 
in order for SPRAY(logT− 1, logT,1)j to land on position x, the 
following must hold:

log T −1∑
i=0

ai2
i = x̄, (1)

where for each i, ai is chosen independently from [0, log T ]. Thus, 
we are interested in the probability that the sum of the different 
ai , each chosen independently from [0, log T ] yield Equation (1). 
Instead of calculating this probability directly we will give an up-
per bound for it based on a simple argument with respect to the 
parity of the bits in the binary expansion of x̄.

The idea is to give the probability that each randomly chosen ai , 
starting with i = 0, contributes to the correct parity of the binary 
expansion of x̄ moving from left to right. This is possible because 
of the shifting factor of 2i for each ai . Certainly, all randomly cho-
sen ai that satisfy Equation (1) must satisfy this property, but not 
the other way around. Therefore, this probability yields an upper 
bound for F(x)j . We show this more precisely as follows.

Let x̄(l) denote the l-th least significant bit of x̄, and for each i, 
let ai(l) denote the l-th least significant bit of ai . In order to en-
sure the correct parity of the binary expansion of x̄ moving from 
left to right by sequentially choosing ai in [0, log T ] starting with 
i = 0, it is easy to see that a0(0) = x̄(0) must hold. More gener-
ally, because of the shifting factor of 2k for each ak , the following 
equation (whose left hand side represents bit addition)

ak(0) + ak−1(1) + . . . + a0(k) + c ≡ x̄(k) mod 2, (2)

must hold for all 1 ≤ k ≤ log T − 1, where c is determined by the 
previous choice of a0, a1, . . .ak−1.

We will derive the desired upper bound by considering the 
probability of sequentially and randomly picking ai that respect 
the parity of the binary expansion of x̄ as explained above, start-
ing with a0, then continuing with a1 and so on until alog T −1. We 
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say that a chosen ak is a match, if it respects the parity of the bi-
nary expansion of x̄ as in Equation (2). Thus we are interested in 
the probability on the right hand side of the following inequality:

F(x)j ≤Pr[a0 is a match]
logT−1∏
i=1

Pr[ai is a match|Ai−1], (3)

where Ai−i is the event where all ak such that 0 ≤ k ≤ i − 1 are 
a match. First we will explicitly derive the right hand side of In-
equality (3) then we will give a simple argument as to why the 
inequality holds.

First of all, it is clear that Pr[a0 is a match] = 1
2 . This is be-

cause we assumed log T is odd and exactly half the numbers 
in [0, log T ] are even or odd. Furthermore, this can be readily 
generalized for Pr[ai is a match|Ai−1], where 1 ≤ i ≤ log T − 1. 
Given Ai−1, i.e., a0, a1, . . .ai−1 that have respected the parity of x̄
as above, exactly half the possible choices in [0, log T ] will con-
tribute an ai such ak(0) satisfies Equation (2), where k = i. Hence 
Pr[ai is a match|Ai−1] = 1

2 , for each 1 ≤ i ≤ log T − 1. Thus,

Pr[a0 is a match]
logT−1∏
i=1

Pr[ai is a match|Ai−1] = 1

2logT
= 1

T
.

(4)

Consider choosing ak sequentially as before, but this time the cho-
sen ak in addition to satisfying Equation (2), must also represent 
an actual possible part of a SPRAY path that satisfies Equation (1). 
We say that a chosen ak is an exact match if this is the case. 
Then, it follows that

F(x)j=Pr[a0 is an exact match]

×
logT−1∏
i=1

Pr[ai is an exact match|Ai−1],

where Ai−i is the event where all ak such that 0 ≤ k ≤ i − 1 are an 
exact match. Hence, Inequality (3) holds, and the desired result 
follows from Equation (4). �
Theorem 2. For each SPRAY(logT− 1, logT,1)j , for any list j in the 
maximum level of a perfect skip graph, the position of the node on which 
the operation lands is at most T

2 + log T · (T − 1) − 1.

Proof. Consider a perfect skip graph such that N ≥ T
2 + T log T . 

We are going to demonstrate that any SPRAY(logT− 1, logT,1)j

operation can reach from its starting position is T
2 + log T ·

(T − 1)T units forward to the right. For any list j in the max-
imum level of a perfect skip graph, if the path chosen by a 
SPRAY(logT− 1, logT,1)j operation moves forward to the right 
by log T nodes on the corresponding lists in every possible level, 
we arrive at a total of 

∑log T −1
i=0 2i log T = log T

∑log T −1
i=0 2i = log T ·

(T − 1) units forward to the right.
By Proposition 3, if we label the positions of the heads of 

lists in the maximum level moving from left to right in order 
of appearance, we arrive at pos0

log T −1, pos1
log T −1, . . . pos2log T −1−1

log T −1 , 
where posi

log T −1 = i, for all 0 ≤ i ≤ 2log T −1 − 1. Consider list k

whose head is the node in position pos2log T −1−1
log T −1 = 2log T −1 − 1 =

T
2 − 1. Then, by the argument in the previous paragraph, there 
is a SPRAY(logT− 1, logT,1)k operation that lands in position 
T
2 + log T · (T − 1) − 1. �

We denote our protocol using the SPRAY(logT− 1, logT,1)j
operations on perfect skip graphs as SPRAY_SG, and on perfect 
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Algorithm 12 bool PQ::removeMin(K key).
1: r = random number [0, t − 1] where t is the number of threads
2: if r = threadId then
3: � Clean as described in [2]

4: while true do
5: level = MaxLevel
6: while level ≥ 0 do
7: node = next unmarked node
8: if node is tail then
9: level = level - 1

10: continue
11: if node.mark() then
12: return true
13: level = level - 1
14: while performed ≤ 2 times do
15: node = next unmarked node
16: if node is tail then
17: return false
18: if node.mark() then
19: return true
20: return false

skip lists as SPRAY_SL. Finally we denote our deterministic, mark-
along protocol on perfect skip graphs as SGMARK. The protocol is 
shown in Algorithm 12.

We conclude that any SPRAY operation in SPRAY_SG, using 
the same technique from [2], satisfies the same probability bounds 
as any SPRAY operation with the same parameters in SPRAY_SL. 
The difference is that the range of furthest reaching SPRAY op-
eration is greater in SPRAY_SG than SPRAY_SL. In particular for 
SPRAY operations with parameters as in Proposition 2 the range 
for SPRAY_SG is T

2 + T · log T , whereas the range for SPRAY_SL
is T · log T . The range of SGMARK is exactly T .

10.1.2. Skip list sprays over T elements
In this section, we define a skip list spray that disperses threads 

among the same range as SGMARK, and then we indicate that con-
tention is expected to be smaller in a skip graph due to structural 
features of the skip graph itself.

Definition 3. A skip list is perfect if the absolute value of the dif-
ference in the positions of any two consecutive nodes on level i
is 2i , and every list on level i contains at least T

2i nodes, for all 
0 ≤ i ≤ log T − 1.

The operation SPRAY(H,L,D) defines a random walk starting at 
height H, i.e., at the head of the list at level H of the skip list. The 
walk continues forward to the right a uniformly random number of 
nodes chosen from [0,L] then moves down the skip list D levels. 
This is repeated until we reach the bottom list and (possibly) walk 
forward to the right one last time. Thus the walk ends in position 
x of the bottom list.

Definition 4. Let x be the position of any node in a perfect skip 
list. Then Fp(x) denotes the probability that, for some fixed H, L, 
and D, SPRAY(H,L,D) lands at position x in the bottom list.

Proposition 1. Let x be the position of any of the first T nodes of a perfect 
skip list. There is a SPRAY(logT− 1,1,1) that lands at position x in the 
bottom list.

Proof. The furthest SPRAY operation moves forward to the right 
a total of T − 1 units as follows, 

∑log T −1
i=0 2i = 2log T − 1 = T −

1. Hence we reach the T -th node. Suppose there is some SPRAY
operation that reaches a node whose position is k, where 0 < k <
T − 1. Consider the following two cases:
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• The path determined by the given SPRAY operation consists 
of a final step forward. By ignoring the final step forward we 
arrive at a path that reaches position k − 1.

• The path determined by the given SPRAY operation does not 
consist of a final step forward. Consider the smallest level i
where the path turns left (moving from bottom to top). The 
preceding node j on the list in level i is in position k − 2i . 
Moving a level down from j then forward to the right every 
possible level we cover a total of 

∑i−1
l=0 2n = 2i − 1 units hori-

zontally and reach position k − 1. �
Corollary 1. Fix H= logT− 1, L= 1, and D= 1. Let x be the position 
of any of the first T nodes of a perfect skip list. Then Fp(x) = 1

T .

Proof. From Proposition 1 we know that there exist some SPRAY
(logT− 1,1,1) operation that reaches any of the first T nodes, 
and from its proof we see that no SPRAY operation can reach be-
yond the first T nodes. Given any position x, where 0 ≤ x ≤ T − 1, 
next we show that the SPRAY operation that lands on position x
is path-wise unique.

Fix an arbitrary x, where 0 ≤ x ≤ T − 1, and consider a 
SPRAY(logT− 1,1,1) operation that lands on the node in po-
sition x. Suppose there exists another path-wise distinct SPRAY
operation that lands on the node in position x, which we denote 
by SPRAY2 . Consider the largest level i and node j where the 
paths of the two path-wise distinct SPRAY operations differ. Let 
the position of node j be k. W.l.o.g. assume the path which be-
longs to the first SPRAY operation moves forward to the right 
from node j on level i before descending a level. This ensures that 
k + 2i ≤ x. The path induced by the SPRAY2 operation does not 
move forward to the right and instead directly descends a level 
from node j. This implies the path can move forward to the right 
from position k at most 

∑i−1
n=0 2n = 2i − 1. Thus the furthest posi-

tion a path induced by SPRAY2 can reach is k + 2i − 1 < x, which 
is a contradiction.

Since there is only one unique path that reaches each x, at 
each level i, where 0 ≤ i ≤ log T − 1, the probability that any given 
SPRAY generates the correct portion of the path at level i is ex-
actly 1/2. Since this probability is independently uniform at each 
level i, we arrive at Fp(x) = ∏logT−1

i=0
1
2 = 1

2logT = 1
T . �

Let X denote the number of SPRAY operations in a perfect skip 
list until every position x, where 0 ≤ x ≤ T − 1, is reached. We 
are interested in the expected number of SPRAY operations which 
ensure that every position x is reached at least once. To arrive at 
the expected number of SPRAY operations we show our question 
of interest is simply the well-known Coupon Collector’s Problem 
[16]. Thus the desired result is proportional to T log T .

10.1.3. Number of successful CAS operations when spraying on skip lists
Now that we defined a skip list spray that disperses threads 

among a segment of size T , we show that the expected number of 
operations to mark all elements in that segment is �(T log T ).

Theorem 3. E[X] is in �(T log T ).

Proof. Let Xi denote the number of SPRAY operations performed 
while exactly i − 1 positions in the bottom list have been al-
ready reached. Then X = ∑T

i=1 Xi holds. Thus, each Xi is a ge-
ometric random variable. If exactly i − 1 positions have already 
been reached by previous SPRAY operations then the probability 
that next SPRAY operation reaches a different position is simply 
pi = 1 − i−1

T . This is exactly the Coupon Collector’s Problem. We 
outline the analysis for completion and clarity as follows:
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E[X] = E[
T∑

i=1

Xi] =
T∑

i=1

E[Xi] =
T∑

i=1

T

T − i + 1

= T
T∑

i=1

1

i
= T · H(T ),

where H(T ) is the T -th harmonic number. Using elementary 
calculus one can show that H(T ) = ln T + �(1) [39, 33] and 
hence T · H(T ) = T ln T + �(T ). Thus it follows that E[X] is in 
�(T log T ). �
Corollary 2. Let T ≥ 4. Then E[X] ≥ 2T .

Proof. We can use well-known elementary techniques to bound 
H(T ) as follows:

H(T ) = 1 + 1

2
+ 1

3
+ . . . + 1

2log T

= 1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6
+ 1

7
+ 1

8

)

+
(

1

2log T −1 + 1
+ . . . + 1

2log T

)

≥ 1 + 1

2
+

(
1

4
+ 1

4

)
+

(
1

8
+ 1

8
+ 1

8
+ 1

8

)

+
(

1

2log T
+ . . . + 1

2log T

)

≥ 1 + 1

2
log T

Then from Theorem 3 we have that E[X] = T · H(T ) ≥ T
(
1 +

1
2 log T

)
, which gives the desired result for all T ≥ 4. �

An expected constant contention on nodes indicates that the 
spraying operation in the skip graph produces paths without in-
ducing memory hotspots, which we interpret as a qualitative argu-
ment for the spraying protocol over skip graphs.

10.2. Number of successful CAS operations when spraying on skip 
graphs with our algorithm

We now characterize how a custom relaxed priority queue algo-
rithm, designed precisely in order to exploit the central structural 
features of the skip graph, can remove elements from a range of T
elements with proven contention being exactly 2 for any number of 
threads T .

Definition 5. Let T = 2n , where n ≥ 1. A perfect skip graph is min-
imal if the number of nodes in the bottom list is exactly T .

Thus each n ≥ 1 determines a unique minimal skip graph (up to 
permutation of lists in each level) which we denote be P SGmin(n). 
Given P SGmin(n), we will show that it contains all smaller perfect 
minimal skip graphs.

Definition 6. Consider P SGmin(n) and P SGmin(m), where n > m ≥
1. Then P SGmin(n) contains P SGmin(m), if by ignoring consec-
utive levels and consecutive nodes of P SGmin(n) we arrive at 
P SGmin(m) (up to permutation of lists in each level).

Proposition 2. For all n ≥ 2, P SGmin(n) contains all smaller minimal 
perfect skip graphs.
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Proof. For n = 1 by definition the minimal perfect skip graph is 
a list with 2 nodes. Consider a list with 4 nodes (2 copies of 
P SGmin(1)). Partitioning this list into two other lists with con-
secutive node positions 0, 2 and 1, 3 we arrive at P SGmin(2). Let 
n = 3. We will construct P SGmin(3) from P SGmin(2) in the fol-
lowing way. We glue two copies of P SGmin(2) together so that the 
height of the new structure is the same as P SGmin(2) but the bot-
tom list has length 8. It is straightforward to see these are the first 
2 levels of P SGmin(3). Thus we arrive at P SGmin(3) by adding its 
maximum level.

Suppose it holds for all n ≤ k, for some k > 3. Consider 
P SGmin(k + 1). Ignoring the maximum level, we see by transla-
tional symmetry that the remaining structure consists of two glued 
copies of P SGmin(k). By the induction hypothesis P SGmin(k) con-
tains all other smaller minimal perfect skip graphs. �

Let T = 2n for n ≥ 1. Then our partition scheme ensures there 
are exactly two threads acting on the heads of each list of the max-
imum level of the perfect skip graph at the beginning of SGMARK. 
In the following arguments we assume that the process of marking 
a node by one of the threads on level n − 1 then having the other 
thread descend to a list on level n − 2 occurs simultaneously for all 
2n−1 lists k of level n − 1. More generally, whenever threads are 
on level i, the ones which fail to mark nodes will simultaneously
move down a level. Furthermore we assume, that if two threads 
traversing the same list where the nearest unmarked node j is the 
same for both, then the threads reach j simultaneously. Suppose 
two threads are acting on every list k of some fixed level i of a 
perfect skip graph, where 1 ≤ i ≤ n − 1, such that for every list k
the nearest unmarked node j is the same for both threads. Then 
we will assume all threads will simultaneously reach their respec-
tive contested nodes.

Under these assumptions, we can model SGMARK as a game 
with n rounds. The last round is a special case where the surviving 
thread will walk forward to the right one last time instead of de-
scending. At the beginning of a regular round all surviving threads 
up to that round are on level i, where 0 ≤ i ≤ n − 2, whereas at 
the end of the round some threads have moved down a level and 
have traversed to the right. We will see that it suffices to consider 
our protocol on minimal perfect skip graphs. First, we will need 
the following definitions, which are well-defined by Proposition 2.

Definition 7. For all n ≥ 2, we arrive at the right hand side 
copy of P SGmin(n − 1) in P SGmin(n), by ignoring level n − 1 of 
P SGmin(n) and the first 2n−1 consecutive nodes of the bottom list 
in P SGmin(n).

Definition 8. For all n ≥ 2, we arrive at the left hand side copy of 
P SGmin(n − 1) in P SGmin(n) via translational symmetry by shift-
ing the right hand side copy of P SGmin(n − 1) in P SGmin(n) to 
the left 2n−1 positions.

Proposition 3. Let T = 2n, where n ≥ 2. Consider any level i of 
P SGmin(n), where 0 ≤ i ≤ n − 1. Consider nodes from left to right in 
order of appearance and let pos0

i , pos1
i , . . . pos2i−1

i denote the positions 
of the heads of the respective 2i list in level i. Then pos j

i = j, for all 
0 ≤ j ≤ 2i − 1.

Proof. This is trivially true for n = 2 by inspection. Suppose it 
holds for some integer k > 2. Consider P SGmin(k + 1). If we ig-
nore level k of P SGmin(k + 1), we are left with the left hand side 
and right hand side copy of P SGmin(k) in P SGmin(k + 1). There-
fore, for all levels i such that 0 ≤ i ≤ k − 1, the statement holds 
by the induction hypothesis. By symmetry, the maximum level of 
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P SGmin(k + 1) is partitioned into two parts, one part of the max-
imum level located above the left hand side copy of P SGmin(k)

in P SGmin(k + 1), and the other above the right hand side copy 
of P SGmin(k) in P SGmin(k + 1). Since the maximum level of any 
minimal perfect skip graph contains lists with only two nodes, the 
portion of each list in the maximal level that is above the left hand 
side copy of P SGmin(k) in P SGmin(k + 1) contains only one node. 
These are the 2k heads of the lists in level k of P SGmin(k + 1), and 
since the maximum level is a partition of the nodes on the bottom 
list, after possibly reordering they have positions 0, 1, . . . 2k −1. �
Proposition 4. For any n ≥ 2 and P SGmin(n), at the end of the first 
round of SGMARK on P SGmin(n), we have 2 threads acting on the 
heads of the lists of the maximum level of the right hand side copy of 
P SGmin(n − 1) in P SGmin(n).

Proof. Fix n ≥ 2, where T = 2n . According to SGMARK, at the be-
ginning of the first round there are exactly two threads acting on 
the heads of each of the lists in level n − 1. By Proposition 3, po-

sitions pos0
n−1, pos1

n−1, . . . pos2n−1−1
n−1 , are marked by 2n−1 threads. 

The remaining 2n−1 threads move simultaneously down to level 
n − 2. Each list in level n − 2 is partitioned into two lists in level 
n − 1 (first two nodes in each level n − 2 become heads of lists 
in level n − 1), and it follows that for each list k of level n − 2, 
we have exactly two threads acting on list k, one for each of the 
first two consecutive nodes on that particular list. There are now 
a total of 2n−2 threads positions at the heads of all list k in level 
n − 2. By Proposition 3 it follows that the threads are in positions 
pos0

n−2, pos1
n−2, . . . pos2n−2−1

n−2 . Since there is also a thread on the 
second node of every list k on level n − 2, for every two threads 
on any such list k the nearest unmarked node is the next consec-
utive one. Counting from the heads of the lists on level n − 2 the 
third consecutive node will be 2n−1 positions away. This implies, 
that at the end of the first round we will have two threads on 
each of the positions pos2n−1

n−2 , pos2n−1+1
n−2 , . . . pos(2n−1+2n−2−1)

n−2 . These 
are just the heads of the lists of the maximum level of the right 
hand side copy of P SGmin(n − 1) in P SGmin(n). �
Corollary 3. Let n ≥ 2. The end of the first round of SGMARK on 
P SGmin(n) is equivalent to the start of a first round of SGMARK on the 
right hand side copy of P SGmin(n − 1) in P SGmin(n).

Proof. Follows directly from Proposition 4. �
Theorem 4. Let n ≥ 2. SGMARK on P SGmin(n) ensures that exactly T =
2n nodes are marked. Furthermore, 2 threads contend for each of the first 
T − 1 consecutive nodes, and 1 thread tries to CAS (logically delete) the 
last node.

Proof. Let n = 2. This means there are 2 threads acting on each of 
the nodes in position 0 and 1 on the second level of P SGmin(2). 
According to SGMARK, one thread each will mark nodes in posi-
tions 0 and 1 respectively, followed by the other two threads that 
will descend to the bottom list. Then, both threads will move to 
the right simultaneously to the node in position 2, and one of the 
threads will succeed in marking the node in position 2. Finally the 
last thread will move to the right and mark the last node. Thus, 
two threads contended for each node in positions 0, 1 and 2, and 
there was no contention in the last node, since at most 1 thread 
can try to CAS (logically delete) the last node.

Suppose the claim holds for some k > 2. Consider the first 
round of SGMARK on P SGmin(k +1). Following the proof of Propo-
sition 4, we see that the first 2k nodes are marked at the start 
of the first round, and there are two threads contending for each 
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of the 2k nodes that are marked. By Corollary 3 we see that the 
end of the first round on P SGmin(k + 1) is the start of the first 
round on the right hand side copy of P SGmin(k) in P SGmin(k +1). 
Therefore by the induction hypothesis SGMARK will mark exactly 
2k + 2k = T k+1 nodes. Furthermore 2 threads contend for the first 
T k+1 − 1 consecutive nodes, and 1 thread tries to CAS (logically 
delete) the last node. �
11. Evaluation

We performed experiments in a system with 2 Intel Xeon 
Platinum 8275CL CPUs, each with 24 cores running at 3.0 GHz 
(96 hardware threads total). The system has 192 GB of mem-
ory and two NUMA nodes. The NUMA-distance tool numactl 
-hardware reports relative intra-node distances of 10 and inter-
node distances of 21. In addition to operations/ms throughput 
measurements, we demonstrate NUMA locality with software in-
strumentation supporting a graphical visualization of remote ac-
cesses. The system runs Ubuntu Linux 18.04 LTS with kernel 4.15.0. 
We compile tests with g++ -std=c++11 -O3 -m64 -fno-
strict-aliasing. We used g++ version 7.5.0.

11.1. Experiment setup

We report the total number of operations per millisecond 
achieved in trials having from 2 up to 96 threads. Each trial is 
an average of 5 runs of 10 s each, and follows exactly the test-
ing procedure of Synchrobench [22] with the flag -f 1. This flag 
indicates that the testing procedure tries to match each trial’s 
requested percent of update operations (inserted and remove) as 
much as possible, and that only successful inserts or removals 
count as update operations. The testing procedure, as well as ran-
dom number generation, are identical to Synchrobench. We run a 
read-heavy (RH) load, with a requested 20% of update operations, a 
write-heavy (WH) load, with a requested 50% of update operations, 
and a priority queue (PQ) load, with 50% of insertions and 50% of 
removals, all distributed uniformly at random across all threads 
(except for our load-balancing tests). If X% of operations corre-
spond to successful updates1 in each individual experiment, we say 
we had X% of effective updates, and we report that percentage in 
each associated graphic caption. Our experiments are defined to 
be high contention (HC) when the key space is 28, medium con-
tention (MC) when it is 211, and low contention (LC) when it is 
217. The structures are preloaded with 20% of their maximum ca-
pacity before any measurements, except for the LC tests, which 
are preloaded with 2.5%. Because these experiments have even 
workload among threads, we do not include the load-balancing al-
gorithm (in Sec. 11.5, we have experiments designed exclusively to 
measure the effectiveness of this particular mechanism). Threads 
are pinned to each CPU, and we fill a socket before adding threads 
to another socket. We allocate memory with libnuma, in chunks 
capable of holding 220 objects, in order to amortize the expensive 
cost of numa_alloc_local(). Membership vectors are gener-
ated as described in Sec. 3. We obtain data from /proc/cpuinfo
on Linux, then renumber threads so the larger the absolute dif-
ference between thread identifiers 1 . . . T , the larger the physical 
distance between their associated CPUs. We consider NUMA do-
mains, core collocation, and hardware-thread collocation in order 
to access distance and define our membership vectors. Memory al-
location/deallocation is done through a custom, NUMA-aware allo-
cator similar to the one in [11], even for the C++ maps representing 
local structures.

1 Failed inserts due to pre-existing keys, or failed removals due to absent keys are 
essentially “contains” operations, as they both return immediately after identifying 
the respective scenarios above.
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In our experiments, we pin threads to cores, which is a stan-
dard approach when evaluating NUMA-aware data structures and 
algorithms. However, the reader may consider a hypothetical situ-
ation where pinning is not appropriate or possible. In that case, 
we could allocate nodes using a membership vector dependent 
not on the thread’s membership vector (now defined in terms 
of the thread’s estimated CPU affinity), but dependent instead on 
the current running location, still following the protocol described 
in Sec. 3. Data partitioning would still occur, and if we can em-
ploy the reasonable assumption that the OS takes into account 
thread affinity when scheduling, we would expect to preserve lo-
cality. One additional problem with this approach is that our local 
structures would not only contain local nodes anymore, even with 
uniform workload among threads. This could be addressed by us-
ing our donation mechanism to force the donation of nodes that 
have been allocated outside the thread’s affinity to the appropriate 
thread. Evaluating with pinned threads makes much more sense 
because the impact of the OS scheduling is removed, and this is 
certainly one of the reasons why pinning threads is standard for 
evaluating NUMA-aware data structures and algorithms. It is im-
portant to note, however, that our approach still benefits from 
hypothetical situations where this might not be possible or appro-
priate.

11.2. General performance

Figs. 4 and 5 show write-heavy (WH) results for the HC and 
MC contention scenarios. Read-heavy (RH) results are presented 
in Appendix B. In our graphs, layered_map_{sg,ssg} refers 
to using C++ std::map in conjunction with the hash [3] as local 
structures, respectively over regular or sparse skip graphs (Sec. 3.3) 
as shared structures; lazy_layered_sg is the lazy variant of
layered_map_sg; rotating is [14], nohotspot is [10], and
numask is [11] as found in Synchrobench’s GitHub (mid August 
2019). Our experiments did not modify the codebase of rotat-
ing, nohotspot, or numask in any way. Our only change was 
adjusting the Makefile so that the compiling options among these 
systems and our layered skip graph are matched exactly. In our 
NUMA setup, using our compiling options, rotating and no-
hotspot generally outperform NUMASK, although we note that 
the similar tests in [11] yield better performance for NUMASK, 
when using different compiling options and under a different ar-
chitectural setup. We invite the reader to consider that such tests 
are prone to variability when different architectural and compil-
ing options are exercised. For the purpose of isolating individual 
design components in our analysis, we developed as control: (i) 
a fine-grain, locked skip list; a concurrent skip list with the same 
codebase and practices as our skip graph code, including our relink 
optimization (Sec. 3.6); (ii) a skip graph without layering; and (iii) 
our layered design over (iii-a) a linked list (layered_map_ll) 
and (iii-b) over a skip list (layered_map_sl). The former (iii-
a) is essentially a layered_map_sg with maximum level 0, and 
the latter (iii-b) is a layered_map_ssg with a single constituent 
skip list (hence, with no opportunity to implement our partition-
ing scheme). Non-layered skip lists or skip graphs have maximum 
level x if the test’s key space is of size 2x , and layered versions 
follow our partitioning scheme definitions (Sec. 3.2).

With a small key space (HC-WH), layered_map_ll performs 
better than layered_map_sg and layered_map_sl up to 32 
threads, but the performance degrades quickly as we have more 
threads or the key space gets bigger (MC-WH, Fig. 5; LC-WH, 
Fig. 6). The reason is that with more threads or bigger key spaces, 
more elements need to be traversed in the unique linked list upon 
searches. Then, we could be tempted to say that the multilevel 
shared structure in layered_map_sg is the reason it performs 
better in MC-WH, but note that layered_map_sl performs sim-
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Fig. 4. HC, WH: 32% effective updates.

Fig. 5. MC, WH: 32% effective updates.

ilarly than layered_map_ll in the same case MC-WH for high 
thread counts. The reason why layered_map_sg performs bet-
ter in the MC-WH scenario is, therefore, the unique differentiating 
factor: the partitioning scheme in the shared structure (the skip 
graph). Further, in the same MC-WH scenario, we note a clear dif-
ference in performance between layered_map_ssg and lay-
ered_map_sl after 32 threads. The unique differentiating factor 
here is multiple vs one skip list as a shared structure. So, the ex-
istence of multiple, overlapping skip lists, employing a partitioning 
scheme across threads is the differentiating scalability factor for 
the good performance of our layered_map_sg.

As far as the lazy implementation performance, we see it as 
a combination of (i) the effectiveness of our partition scheme for 
increasing NUMA locality and reducing contention (implied above 
and verified in Sec. 11.3); (ii) the commission policy to unlink in-
valid, marked nodes (isolated right below); and (iii) the fact that 
with smaller key spaces, threads will more commonly find un-
marked nodes through their local hashtable, which performs much 
better compared to the std::map local structure. Under HC-WH, 
[14] performs well, and our control implementation is compara-
ble to [10,11]. Under MC-WH, [10] performs well, and our control 
implementation is comparable to [11,14]. In any case, we confirm 
our expectation that naive skip graphs scale poorly, because while 
in a skip list the expected number of levels of each node is 2, in a 
44
Fig. 6. LC, WH: 4% effective updates.

skip graph it is always the maximum. Further, on Table 2, we see 
how layered_map_sg, without any commission period, requires 
a lot more CASes per operation than other structures. With that in 
mind, and considering our indications that the partitioning scheme 
works, we have first to make sure that skip graphs become viable
with techniques such as lazy insertions/removals, the commission 
period, and our relink optimizations mentioned in Sec. 3.5.

We believe the LC-WH scenario is very meaningful from an an-
alytic standpoint. First, it shows that our layered approaches take 
full advantage of a low contention setting, matching the perfor-
mance of a locked skip list (expected to work very well in such 
scenarios).

We attribute this to (i) highly effective local structures, with no 
overhead of atomic operations or locks; (ii) to the fact that new 
nodes need to be inserted in only 2 levels on expectation, instead 
of a fixed 2-6, depending on the number of threads, as prescribed 
by our partitioning policy; (iii) to a better cache efficiency, docu-
mented in Table 1; and (iv) to better NUMA locality (verified in 
Sec. 11.3, below). The performance of layered_map_ssg in fact 
reveals an interesting tradeoff: although less shared nodes reach 
the topmost level and get included in the local structures, thus 
making the starting point of shared operations not as “close” as in 
the non-sparse version, the number of CAS operations required to 
insert nodes is substantially lower than layered_map_sg. The 
poor performance of non-layered skip graphs also reflects a higher 
number of required CAS operations for insertion. We further dis-
cuss CAS locality in Sec. 11.3.

Another reason for why the LC-WH scenario is meaning-
ful is that it allows us to visualize the lower performance of
lazy_layered_map_sg as compared to layered_map_sg in 
this particular setting. Here, we believe the increased performance 
of the non-lazy version to be a direct consequence of our conserva-
tive commission policy to unlink invalid, marked nodes (Sec. 3.5). 
We think this happens as the commission policy (essentially, a lazy 
unlink policy) is making the shared structure contain more invalid 
or marked nodes present in the LC-WH scenario compared to the 
HC-WH or MC-WH scenarios (and increased cache miss cost). In 
any case, we do think that the commission policy overhead is a 
fair price for the highly increased performance in the MC and HC 
scenarios, which allows us to outperform competitor maps in the 
LC-WH as well.
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Fig. 7. CAS heatmap: lazy layered skip graphs, MC-WH.

11.3. NUMA locality and contention reduction

We verify that our partitioning mechanism promotes better 
NUMA locality with the experiment below. We define thread mem-
bership vectors to be the reversed bit notation of their respective 
thread IDs, and examine the heatmaps of Figs. 7 and 8, where 
coordinates (i, j) indicate the distribution of CAS instructions per 
operation performed by thread i into a node allocated by thread j, 
instrumented manually on node access functions on the 96-thread 
MC-WH scenario. The memory access pattern in Fig. 7 shows that 
the larger the distance between thread IDs, the smaller the num-
ber of memory accesses.

Comparing the lazy skip graph and a skip list, the latter serving 
as control (thus implemented using the same codebase and prac-
tices), the heatmaps in Figs. 7 and 8 indicate a dramatic increase 
in CAS NUMA locality on the lazy layered skip graph compared 
to skip lists. In addition, as expected, the first 64 threads share 
more accesses among themselves, because the thread membership 
vectors were defined to be the reversed bit notation of the re-
spective thread IDs. More specifically, the first 64 threads are in 
the 0-labeled first-level linked list in the skip graph (highest bit 
0 in thread IDs, lowest bit 0 in membership vectors), while and 
the remaining 32 threads are in the 1-labeled first level linked list 
(highest bit 1 in thread IDs, lowest bit 1 in membership vectors). 
Referring to Sec. 2, this means that the top-level linked lists in 
the skip graph, those performing the largest jumps in the search 
procedure, will navigate among those first 64 threads, giving them 
slightly more efficient searches. If we added another 32 threads, 
the graph would become perfectly symmetrical. We conclude that 
the memory access pattern is a direct consequence of our member-
ship vector assignment, which validates precisely our claim that 
the skip graphs introduce better NUMA locality – as long as we 
physically allocate threads respecting that structured access pat-
tern. In practice, we will define the membership vectors based 
on the system’s characteristics, as defined in Sec. 3, and not sim-
ply based on thread ID. Our heatmaps abstract physical placement 
completely, and are meant to indicate that our partitioning mech-
anism indeed imposes a particularly well-structured and desirable 
access pattern. We do provide scripts that read the system’s char-
acteristics and generate thread membership vectors upon launch.

Figs. 9 and 10 (for layered_map_sg and layered_map_
ssg) show more clearly the “halving pattern” which is a direct 
consequence of our thread membership vector allocation. In Fig. 9, 
45
Fig. 8. CAS heatmap: skip lists, MC-WH.

Fig. 9. CAS heatmap: (non-lazy) layered skip graphs, MC-WH.

the vertical line in the left represents accesses to the head of the 
skip graph, which is located at thread number 1. In addition, the 
heatmap for the sparse skip graph (Fig. 10) shows a similar pat-
tern than the one for the non-sparse version (Fig. 9), but with a 
more course granularity. This directly reflects our definition of the 
underlying data structure: as we increase a level in a sparse skip 
graph, we have only 50% of elements of a shared list redistributed 
in the corresponding upper level shared lists. So we have twice the 
sparsity as compared to regular skip graphs, and the sizes of the 
squares in the halving pattern in Fig. 10 are exactly two times the 
size of the squares in the corresponding pattern in Fig. 9.

Please note that our heatmaps are all about distribution of CAS 
operations, not their absolute number. In fact, if we consider the 
absolute number of CAS operations, we see that the sparse skip 
graph performs about 2.84 times less CAS operations than the 
regular skip graph (Table 2). However, layered_map_sg and
layered_map_ssg perform similarly in the MC-WH workload 
(Fig. 5). We conclude that the performance gain stemming from 
skip graph sparsity (i.e. a reduced number of CAS operations) must 
be compensated with a reduced ability to find good starting points 
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Table 1
Average (instructions & data) cache misses per operation, HC-WH, 32 threads. Numbers collected with 
PAPI.

T lazy_sg map_sg map_ssg sl

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

8 52.8 12.6 3.1 56.5 12.4 3.1 57.6 12.5 2.7 65.0 15.1 3.1
16 53.6 14.5 3.4 55.9 13.7 3.0 59.0 14.1 3.1 73.1 16.7 3.5
32 87.5 18.7 3.5 73.9 14.5 3.0 93.7 18.1 2.9 93.0 24.6 3.7
Fig. 10. CAS heatmap: sparse layered skip graphs, MC-WH.

Table 2
96 threads, HC-WH. CAS/op does not include uncontended CAS operations upon 
node insertion. Comparing the lazy map/sg with the skip list, we can observe 6x 
more CAS locality, 65% less CAS/operation, and substantially better CAS success rate.

lazy map/sg map/sg map/ssg skip list

loc. reads/op 9.105 8.933 4.264 0.477
rem. reads/op 48.076 54.521 65.123 45.392
loc. CAS/op 0.02508 0.177 0.0137 0.012
rem. CAS/op 0.3493 2.524 0.888 1.113
CAS succ. rate 0.999 0.986 0.982 0.883

for shared operations, as expected for sparse skip graphs. This 
should increase the number of cache misses, compensating for the 
reduction of CAS operations. We confirm this explanation in Ta-
ble 1, which shows a clearly higher cache-miss ratio for sparse 
skip graphs as compared to non-sparse versions. This table also 
shows that our layered skip graph has a reduction of 21% in L1 
misses, 41% in L2 misses, and 18% in L3 misses with 32 threads as 
compared to skip lists. We except fewer caches misses due to our 
partition scheme, which has been designed precisely to increase 
locality in the shared structure operations.

Related to contention, Table 2 shows additional metrics col-
lected via manual code instrumentation, on the 96-thread HC-WH 
scenario. Both our heatmaps and Table 2 do not count CAS, read, 
or write operations performed over an inserting node, otherwise 
locality would be artificially inflated with operations that are in-
herently local, as threads have to initialize their allocated nodes. 
Any CAS operation metric presented is a maintenance CAS: an op-
eration required to link, unlink, or cleanup nodes.

Although lazy_layered_map_sg performs slightly more 
reads per operation than skip lists, it performs 68% less remote 
maintenance CASes per operation. The CAS success rate is sub-
stantially higher (99% in lazy_layered_map_sg vs. 88.3% in 
the skip list). Both the increase in NUMA locality, as previously 
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Fig. 11. MC-PQ: 82% effective updates.

discussed, and the contention reduction, are attributed to our 
partitioning scheme, designed precisely with those goals in mind 
(Sec. 3.2). Note that atomic writes are only used to initialize nodes 
before insertion. Hence, these operations are all contention-free 
and 100% local, so they are not measured.

11.4. Relaxed priority queues

Fig. 11 tests multiple implementations for relaxed priority 
queues using skip graphs. The spray implementation consists of 
the application of the spraying technique of [2] over skip graphs; 
the sg_spray implementation is our custom protocol that tra-
verses the skip graph deterministically, marking elements along 
this traversal (Algorithm 12). We also have a control skip list 
(implemented using the same codebase and practices) where we 
perform spray operations as in [2] but in skip lists, not skip graphs, 
and without our layering approach.

We note that spray scales better than sg_spray. The rea-
son for the better scalability, although Theorem 4 indicate that
sg_spray is subject to a very small contention, is that the range 
of spray is slightly larger (Theorem 2). Indeed, Fig. 12 shows an 
experiment similar to the one in [2], where we perform traver-
sals and only note which nodes would be marked, without actually 
marking any element. The experiment shows that sg_spray is 
less relaxed than spray, so the reduced scalability of sg_spray
is explained with the experiment of Fig. 11. In conjunction, Figs. 11
and 12 essentially exhibit a tradeoff between priority queue relax-
ation and scalability.

11.5. Load balancing

In order to evaluate load balancing, we show (i) two experi-
ments measuring the effectiveness of the load balancing protocol 
(that is, making local structures similar in size, containing ele-
ments evenly distributed across all key space); and (ii) an experi-
ment demonstrating the overhead of the mechanism.
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Fig. 12. MC-PQ: Key range of removed elements (%).

Fig. 13. Local structure sizes, keyspace = 2048. The color indicates the number of 
elements per thread, per time.

11.5.1. Donation effectiveness
As far as the effectiveness of the protocol, we consider two ex-

tremal experiments: (i) a scenario where only thread T0 inserts, 
and all others perform removals and contains operations in an MC-
WH experiment (done in Fig. 13); and (ii) a scenario where 1/2 of 
the threads insert only on the 0-1023 range of a 2048 keyspace, 
and 1/2 of the threads insert only on the 1024-2047 range of the 
keyspace (done in Fig. 14). We use p = 1 for the “aggressiveness 
factor” in the load balancing protocol. In both experiments de-
scribed below, we run the background thread in a hardware thread 
separate from the application threads.

We run experiments for 10 s, each starting with the extremal 
load imbalance described above, and we take snapshots of the ele-
ment distribution among threads at 100 discrete time points dur-
ing this interval. Fig. 13 shows that the sizes of the local structures 
are similar in the 10-spaced time points in our experiment (we 
chose to graph one time point per second for the sake of better vi-
sualization). Specifically, the X-axis represents time, varying from 
0-10 s, the Y-axis represents 8 different threads, and the color in-
dicates the local structure size (not counting marked elements) for 
each thread. Note that even after our first snapshot, the work dis-
tribution is already similar among the threads – a consequence of 
the “aggressiveness” factor of 1 used in our experiments.

Fig. 14 shows that the key distribution of two threads that 
belong to two different groups are spread throughout the whole el-
ement space. In the figure, the X-axis represents possible keys, the 
Y-axis represents 10 discrete time points, one per second, and the 
color represents whether a particular key belongs to thread 1 or 
47
Fig. 14. Key distribution, 2048 keyspace. The color indicates the owning thread, per 
key, per time.

2 in their local structure. Once again, even after the first second, 
the key distribution is already roughly balanced among the two 
threads, despite their extremely uneven key distribution for inser-
tions. In terms of performance, we verified experimentally that our 
load balancing mechanism has a 20% of scalability impact at the 
highest thread count we tested (96 threads) (and smaller impact 
for smaller thread counts). We note that we designed our protocol 
so that it gives total flexibility to the programmer: the load balanc-
ing can be turned off completely if the application has a uniform 
operation distribution among threads, or the aggressiveness factor 
can be otherwise adjusted to the imbalance expected by the appli-
cation.

11.5.2. Load imbalance overhead
In order to have a sense of how much overhead the load bal-

ancing mechanism introduces, we conducted experimental trials 
under a MC-WH workload (25% of insertion, 25% of removals, 
and 50% of contains operations, with a 211 key space size). The 
tests were run for 10 s before terminating. We vary the num-
ber of threads from 4 to 95 (leaving one core running the back-
ground thread exclusively). We compare two executions: one la-
beled synchrobench and one labeled load_bench. The syn-
chrobench protocol runs the lazy_stacked_map_sg without 
the load balancing mechanism, following the same experimental 
setup as discussed in the previous sections. We remind the reader 
that synchrobench tries to match the user specified percent-
ages of insertions, removals, and containment operations as much 
as possible by uniformly distributing update operations across all 
threads. That is, when the user specifies 25% insertions, 25% re-
movals, and 50% contains operations, the synchrobench pro-
tocol assigns all threads to make 25% of their operations inser-
tions, 25% of their operations removals, and the rest contains. This 
test is run without the load balancing mechanism to show the 
performance of the lazy stacked data structure when all threads 
are inserting equally and have equal local structure sizes. The
load_bench protocol is identical to synchrobench except for a 
few modifications. First, they run lazy_stacked_map_sg with
the load balancing mechanism, launching the concurrent back-
ground thread in addition to the specified number of worker 
threads. Additionally, load_bench tries to match the user spec-
ified percentages of operations by distributing operations between
threads, rather than across threads. That is, if the program spec-
ifies 25% insertions, 25% removals, and 50% contains operations,
load_bench assigns 25% of threads to only do insertions, 25%
of threads to do only removals, and the other 50% of threads to 
do only contains operations, with thread identities chosen ran-
domly. Our test aims to show that the load balancing mechanism 
allows lazy_stacked_map_sg to be viable even when substan-
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Fig. 15. MC, WH: comparing a load balanced setup (synchrobench), with one 
where the workload among threads is unbalanced (load_bench).

tial work imbalance is introduced, yet still providing a reasonable 
comparison as the percentage distribution of operation types is 
identical when we consider all threads in the system.

The experiments described above are presented in Fig. 15. Note 
that the load imbalance that we introduce in the load_bench
test is extreme, as most threads (75% of them) would have empty
local structures if the load balancing mechanism was disabled. The 
cost of some operations would be prohibitive in that case, because 
without load balancing we could not even guarantee searches in 
expected logarithmic time: 75% of threads would start their search 
in the head of the skip graph. With the load balancing mechanism, 
we are able to scale up to 100000 operations per millisecond even 
with such high imbalance, matching the performance of our non-
lazy stacked skip graph (Fig. 5).

12. Conclusion

We presented a technique to promote NUMA-aware data par-
allelism inside the concurrent data structure, bringing significant 
quantitative and qualitative improvements on NUMA locality, as 
well as reduced contention for synchronized memory accesses. 
Our design is based on integrating thread-local sequential maps 
with skip graphs, while performing a data partitioning scheme 
over the skip graphs for increased NUMA locality. By “qualita-
tive” increase in NUMA locality, we mean that remote memory 
accesses are not only reduced in number, but the larger the dis-
tance between threads in the system, the larger the reduction is. 
We provide an optional load-balancing mechanism for applications 
where the types of operation are not uniformly distributed among 
threads. Our load balancing mechanism is based on donating in-
serted nodes across thread-local indexes of all threads, coordinated 
by a single background thread.

For relaxed priority queues, we consider two alternative im-
plementations: (a) using “spraying”, a well-known random-walk 
technique usually performed over skip lists, but now performed 
over skip graphs; and (b) a custom protocol that traverses the 
skip graph deterministically, marking elements along this traver-
sal. We provide formal arguments indicating that the second ap-
proach is slightly more relaxed, that is, that the span of removed 
keys is larger, yet shows smaller contention and higher scalabil-
ity. We also explore the design of an additional skip graph vari-
ant, called sparse skip graph, with benefits for low-contention/low-
update settings, and provide an optional mechanism for handling 
non-uniform work distributions.
48
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