
Using Layering and Data Partitioning Techniques
to Increase NUMA-Locality and Performance in

Concurrent Data Structures
Davidson College

Sam Thomas

May 5, 2020

Abstract

Data structures are fundamental components of efficient computing. With the ever-
increasing role of multiprocessing in computing, the need for thread-safe concurrent
data structres is paramount. In particular, Non-Uniform Memory Access (NUMA)
machines are more efficient in accessing particular partitions of memory, so modern
concurrent data structures should be built with NUMA architecture in mind.

This thesis proposes a technique for designing concurrent data structures that
optimizes memory accesses for hierarchical NUMA machines by utilizing a novel
partitionable skip list variant called a skip graph. It also proposes a technique that
layers thread-local sequential data structures on top of the partitioned skip graph
to minimize traversals across synchronized variables. These techniques allow the
construction of NUMA-aware data structures that are highly adaptable to differ-
ent implementations that will increase performance in several different concurrent
environments.

2

Dedication

To anyone who’s thought why me? why now? and made it out the other side to tell
the tale. You’re capable of so much more than you give yourself credit for.

3

Declaration

I declare that the work that went into this research and thesis was my own with the
help of Dr. Hammurabi Mendes and Dr. Jonad Pulaj, who co-advised the writing
of this thesis, and upheld the standards of the Davidson College Honor Code.

4

Acknowledgements

I want to thank my thesis committee for taking the time to work through the
materials presented in this thesis even with the challenges that come with being a
professor during COVID-19.

I want to thank Dr. Mendes for all of his help with research and beyond. Trying
to quantify his guidance over the past three years or so in words would not do justice
to the love of research he fostered in me or the personal growth he helped me reach.

I want to thank Ana Hayne for all of her help with proof-reading this thesis and
being a source to commiserate over the thesis writing process with. If you’re reading
this final draft, we did it!

I want to thank all of my friends who have been so supportive of me over the
past four years - even when I was hidden in the library late at night instead of
hanging out. To name a few; thank you to the members of the men’s and women’s
track teams - especially the seniors, Fresh Kitties forever - for always having my
back through thick and thin; thank you to my first-year hallmates on base rich for
making me feel at home and always making me laugh; thank you to the pep band
for escape from reality at basketball games - crazy how shouting can relieve stress.

I also wanted to give a special shoutout to Alex Hazan and Jake Clary for
everything over the past few years. I really cannot imagine having done college - let
alone this thesis - without you both. It’s going to be a very great day when we’re
all together again.

5

Contents

1 Introduction 7
1.1 Synchronization . 7
1.2 Linearizability . 11
1.3 Skip List . 13
1.4 Concurrent Skip List . 15
1.5 Skip Graph . 20
1.6 Non-Uniform Memory Access (NUMA) 21
1.7 Thesis Statement . 22

2 Contributions 23
2.1 Fundamental Contributions . 23
2.2 Variant Contributions . 29
2.3 Applications . 31

3 Related Work 35
3.1 Skip Lists . 35
3.2 Priority Queue . 37
3.3 NUMA . 38

4 Evaluation 39
4.1 Testing Procedures . 39
4.2 Testing Environment . 39
4.3 Performance . 40
4.4 Locality . 43
4.5 Thread Pinning . 48
4.6 Nodes Per Search . 49
4.7 Memory Reclamation . 50
4.8 Priority Queue . 52

5 Potential Future Work 55
5.1 Background Threading . 55
5.2 Transactional Memory . 56

6 Conclusion 57

A General Commentary 58

B Additional Algorithms 60

6

Chapter 1

Introduction

Concurrent programming is a technique that utilizes multiple threads in parallel with
shared resources to achieve increased performance as compared to sequential pro-
gramming alternatives. Threads consist of individual processes acting independent
of one another to achieve their own ends, namely by making a call to a thread func-
tion on which it will run. The need for concurrent programming grows inexorably
as multicore computers become bigger and more commonly accessible. Yet, as a
whole, the task of concurrently programming algorithms that are correct and run
fast introduces a variety of challenges.

Ideally, seeing as threads act in parallel, it would be expected that each additional
thread added to an environment would increase the overall throughput by 100%.
Throughput is defined as the quantity of operational performance. That is, suppose
there is a single thread executing a process at 1000 operations per millisecond. If
a second thread were to be added, a naïve expectation may be that there would
now be 2000 operations per millisecond. Introducing another thread would give
3000 operations per millisecond and so on. In practice, there must be some form
of synchronization between threads in order to ensure that all data is correctly
preserved in a way that makes sense. These synchronization mechanisms degrade
from the idealized performance of parallel computing on shared data, which will be
introduced and discussed throughout this chapter.

1.1 Synchronization
Synchronization refers to the notion of preserving a global definition for the state of
any particular data at any point in time. The effects of the lack of synchronization
on the correct preservation of data are first displayed in the linked list Fig. 1.1. The
figure shows two threads operating on a list that originally is only made of three
nodes, 7, 16, and 31. There are three critical frames of the

Notice that in state (a), the linked list is made up of nodes for the values of 7, 16,
and 31. In state (b), notice that Thread 1 has already began a call to insert(20)
into the linked list. In particular, Thread 1 has allocated a new node with value
20 and pointed it to 31. Thread 1 still has to update 16’s pointer from 31 to 20.
However, notice that in state (b) this operation is happening in parallel with thread
2, which makes a call to remove(16). In order to do such an operations, Thread 2
will need to “relink” the pointer from node 7 from 16 to 31. Both operations, having
completed these steps, should return true.

7

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 1.1: A concurrent sequence of operations on a linked list. Step (a) is the
original state of the list. Step (b) shows Thread 1 inserting 20 in green and Thread
2 removing 16 in red. Step (c) shows the final state of the linked list, where only 7
and 31 are discoverable.

Note that state (c) shows that this removes both 16 and 20 as 20 is only dis-
coverable through 16. Yet, based on the return types of Thread 1 and Thread 2’s
operations, the expected state of the linked list would be to have 7, 20, and 31, as
20 was successfully inserted and 16 was successfully removed. At least, this was
what was expected based on the returned values by the thread functions. This in-
consistency between expected and observed outcomes warrants the implementation
of synchronization mechanisms to preserve correct outputs.

Lock-Based Synchronization
One way to achieve synchronization is through a lock-based implementation. Locks
are objects that ensure that only a single thread can proceed through a certain
portion of the code at a time while other threads attempting to acquire the lock
are left “waiting” or “spinning”1 until it can be acquired. Though there are many
potential implementations of locks, they all promote the same general idea. Namely,
they ensure that only one thread can operate within a critical section, or the code
between obtaining and releasing a lock object, at a time. That is, locks can be used
to avoid the situation where thread 2 called remove(16) in state (b) of Fig. 1.1 and
removed more than one node on a single remove call from the linked list.

The following is a naïve way to implement mutual exclusion, or a situation where
only one thread can operate on a shared variable at a time. Acquire a global lock
before making any changes to the linked list. Only once the lock is acquired can
you make any changes. Release the lock when finished. This can be seen in Alg. 1.

1This is implementation dependent. Generally, wait-based locks are better for longer periods
of being locked out and spinning is better for shorter periods of being locked out.

8 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 1 Global Lock
1: ▷ Lock has lock() and unlock() capabilities
2: lock = GlobalLock()
3: procedure Insert(key)
4: toInsert = Node(key)
5: ▷ Assume search gives access to the node immediately larger and smaller

than the desired key
6: if search(key) is false then
7: lock.lock()
8: toInsert.next = next
9: previous.next = toInsert

10: lock.unlock()
11: return true
12: return false
13: procedure Remove(key)
14: ▷ Assume search gives access to the node immediately larger and smaller

than the desired key
15: if search(key) then
16: lock.lock()
17: previous.next = next
18: lock.unlock()
19: return true
20: return false

The problem with using a single global lock to implement mutual exclusion is
that it causes starvation. Starvation is the idea that certain threads will never have
the opportunity to act on the object. Imagine the following execution of two threads
operating on the linked list in Fig. 1.1 with the above implementation. First, Thread
1 calls Insert(20) and then Thread 2 calls Remove(16). Suppose Thread 1 wins
the global lock. That is, Thread 2 has to wait for Thread 1 to release the lock
in order for it to proceed with its execution. However, suppose in this situation
that the operating system temporarily deschedules Thread 1 so it can perform other
system-wide tasks or run other threads. Now, all of Thread 2’s execution time
is spent waiting on Thread 1 to release the lock while Thread 1 is dormant. In
this situation, Thread 2 is blocked from execution. This is more likely to occur as
contention is increased, which happens by increasing the number of threads and/or
reducing the element space in which threads can operate.

It is important to note that, although Thread 2 is subject to starvation, the
overall correctness of the structure remains is preserved at all times. The challenge
presented by starvation is one of performance rather than correctness. While correct-
ness and performance are important both in concurrent programming, correctness
trumps performance to ensure that the program can run successfully and execute as
expected. As such locks are essential over no synchronization mechanisms.

The program’s throughput can be improved with a more strategic use of locks.
For instance, consider the following implementation of “fine-grained locking” as is
demonstrated in Alg. 2. The idea is to embed a lock in each node, so that no two
threads can operate on the same node at the same time. This will allow for more
threads to operate in parallel if they operate on different parts of the data, while

Section 1.1 9

Layering and Data Partitioning Techniques for Concurrent Data Structures

still ensuring that the data is preserved.

Algorithm 2 Fine Grained Locking
1: ▷ Node is a structure that holds data and a lock
2: procedure Insert(key)
3: toInsert = Node(key)
4: ▷ Assume search gives access to the node immediately larger and smaller

than the desired key
5: if !search(key) then
6: toInsert.next = next
7: previous.lock()
8: previous.next = toInsert
9: previous.unlock()

10: return true
11: return false
12: procedure Remove(key)
13: ▷ Assume search gives access to the node immediately larger and smaller

than the desired key
14: if search(key) then
15: previous.lock()
16: current.lock()
17: next.lock()
18: previous.next = next
19: previous.unlock()
20: current.unlock()
21: next.unlock()
22: return true
23: return false

In the general case, this implementation of lock-based synchronization improves
upon the throughput of a singular global lock because more threads can operate in
parallel. Again, consider the case of Fig. 1.1 where Thread 1 calls Insert(20) and
Thread 2 makes a call to Remove(16). In this situation, Thread 1 and Thread 2 can
both operate on the structure in a thread-safe manner due to the limited contention
between threads. That is, Threads 1 and 2 are only contending for a singular shared
lock, which is 16. Furthermore, the data remains protected because two threads
cannot operate on the same data at the same time.

Lock-based synchronization is not relevant for the purposes of this thesis. This
largely comes from the inevitable bottlenecking that occurs under high-contention
environments. While it is inevitable that this bottleneck will occur in high con-
tention, lock-based synchronization renders threads totally dormant, which is an
ineffective use of CPU resources and intuitively defeats the purpose of having mul-
tiple threads. Such a situation motivates the alternative utilization of a lock-free
form of synchronization.

Lock-Free Synchronization
Compare-and-swap (CAS) is a lock-free atomic hardware operation on an atomic
variable that acquires a cache line in exclusive mode and flushes the updated variable

10 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

to other CPUs in the event that its present state matches the provided expected
state on comparison. To demonstrate this, suppose that there was an unsigned, 64
bit integer atomic<uint64_t>x=5 and a process wanted to, in a thread-safe and
lock-free manner, increment it to 6. To do so, that process would call x.CAS(5,6)
and CAS would only return true if the value of x was 5 and that this current thread
was the one that could push 6 to the value of x.

CAS is the most commonly and successfully used lock-free synchronization tech-
nique. It is an atomic operation, meaning that it is indivisible by any other oper-
ation. That is, it appears in-place in context of the surrounding code regardless of
compiler optimizations. Furthermore, the nature of CAS means that it operates on
atomic variables, or variables that are visible to all threads at all times. Note that
operating on atomic variables is much slower than operating on local memory in
that local variables must only be flushed to the local cache whereas atomic variables
must flushed to the cache of each CPU.

In this sense, CAS operations are particularly expensive in the number of clock
cycles needed to perform the overall operation. Furthermore, each atomic variable
must be written to by a CAS operation individually, which can create a lot of
overhead when making many write calls. As such, the most effective utilization of
CAS as a lock-free synchronization mechanism still minimizes its usage.

1.2 Linearizability
In order to have a properly correct concurrent application, there must be some stan-
dard of correctness in place. The standard for judging whether or not a concurrent
application is correct is defined as whether or not its operations are linearizable.
That is, a program is linearizable when all operations that happen concurrently
have an ordering. Each operation must have definably happened before or after all
other operations to make this ordering. This definition of linearizability suggests
that each operation must be defined by certain checkpoints in either the code or in
the logical understanding of how the code operates called linearizability points.

To demonstrate exactly how linearizability and linearizability points work in
practice, consider the example of two threads inserting to and one thread removing
from a queue, implemented by an array, concurrently. Suppose performing an in-
sertion into the structure is done by (i) successfully being given access to a location
in the queue2 and (ii) adjusting the state of that location in the queue. Similarly,
suppose removals are done by (i) examining the first location of the queue and, if
that location is not empty, (ii) removing the element in that location. In order for
inserting threads to linearize with one another, they will be ordered based upon
the real-time ordering of being granted access to a location in the queue. Inserting
threads will linearize with the removing thread at the point at which the cell is
updated with the value.

To see how these definitions look in practice, consider example one of Fig. 1.2.
Thread 1, thread 2, and thread 3 all perform their operations with a period of
quiesence between them. As such, it must have been the case that thread 1 was
given access to its location of the array before thread 2. Furthermore, seeing as the

2There are several ways this can be done. For the sake of this example, assume it is done by
performing a CAS operation on an atomic boolean flag.

Section 1.2 11

Layering and Data Partitioning Techniques for Concurrent Data Structures

first location of the queue was updated before thread 3 began its remove call, it
must be the case that thread 3 was able to successfully remove an element, and that
element must have been (a).

Now consider example 2 in Fig. 1.2. Notice how thread 1 and thread 2 execute
concurrently. Further, notice that thread 3 is invoked strictly after both thread 1
and thread 2 finish their execution. It follows that thread 3 will remove an element
because the first location of the array will have been updated by either thread 1 or
thread 2. Though, the question is raise - which element will thread 3 remove? There
is a linearizable explanation for either element (a) or (b). If thread 3 removes (a),
it must have been the case that thread 1 was granted access to the first position in
the queue by finishing step (i) of the insertion method before thread 2. If thread
3 removes (b), then the same must have been true with thread 2 being granted
access to the first position. Also notice how it is possible that such a situation could
happen regardless of the fact that thread 1 began its method before thread 2. Thread
2 may still have reached that line first by benefitting from cached variables, thread
1 may have been momentarily descheduled by the operating system, or several other
possible explanations. Either way, if thread 3 removes (b), it must have been the
case that thread 2 completed the inserting linearizability point before thread 1.

In example 3 of Fig. 1.2, thread 1 overlaps with thread 2 and thread 3, where
as threads 2 and 3 only overlap with thread 1. As such there are three possible
outcomes of thread 3’s call to remove: it could remove (a), it could remove (b), or
it could remove nothing. Let’s first consider the case where thread 3 removes the
element (a). If thread 3 removes (a) it must have been the case that thread 1 was
able to successfully be given access to the first position of the queue before thread
2 and must have put (a) in that location before thread 3 was able to check the
location. It also must be the case that (b) is in the queue before thread 3 removes
(a) in such a situation because thread 2 finished its call before thread 3’s remove
method was invoked.

If thread 3 removes (b), it must be the case that thread 2 was granted access
to the first location of the queue before thread 1 was able to do so. Since thread 2
finishes its execution before thread 3 starts, it must be the case that (b) was in the
queue when thread 3 checked the first location, so thread 3 removes the element,
which is (b). Notice, however, that no determination can be made as to whether or
not (a) is in the queue at the moment thread 3 begins its call to remove. That is,
it may have been the case that thread 1 was not able to update the position it was

Figure 1.2: Three potential cases of linearizability. Thread lifespans are represented
by colored line underneath the figure. Thread 1 inserts a node with value (a), Thread
2 inserts node with value (b), and Thread 3 removes the head element of the queue.

12 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

granted in the queue before thread 3 made its call to remove, but no determination
can be made with any certainty.

Now consider the case where thread 3 removes nothing. If this were to happen,
it must have been the case that thread 1 was granted access to insert into the first
location of the array, but was unable to physically insert (a) into that location
before thread 3 checked the first location of the queue. Notice that, in such a
situation, thread 2 would have been granted access to the second position of the
queue and finished inserting (b) into that location before thread 3 was able to start
its execution. That is, the queue was not empty before thread 3 made a call to
remove, but still returned false. This outcome may be undesirable, but is still
perfectly legal within these definitions of linearizability. As such, building provably
linearizable concurrent data structures is a highly non-trivial task.

These cases demonstrate the importance of having very clearly defined lineariz-
ability points in a concurrent environment to prove its correctness. The correctness
of certain outcomes are highly dependent upon a particular implementation of an
application. As such, discussing both the particularities of the implementation and
its linearizability points are crucial.

1.3 Skip List
Much of the work in this thesis is built upon a skip list. A skip list is a probabilistic
data structure that behaves and operates as an ordered set of nodes. They were first
introduced by [17]. Skip lists allow for searching for a node in O(log(n)) time. In this
sense, it is a very fast data structure and is frequently utilized in the development
of concurrent algorithms because it provides tree semantics. Trees are not used in
concurrent environments because their balancing requires a maintenance of a “root”
element that will be subject to high contention. A skip list is made up of a series
of linked lists that are organized in levels. Note that each level is itself a linked list,
but the upper-level linked lists are part of the same node. For example, 13 belongs
to three linked lists, but 13 is a single node. Levels are organized hierarchically and
can be seen in Fig 1.3.

For a node to be “in” a skip list means for it to exist at the bottom level. Each
node has numbered keys which can be seen in Fig 1.3 and an associated value; a
maximum height, which is the number of lists it exists in; and its next pointers,
which refer to the next node in each linked list. Note that this means that nodes
will be have multiple references as possible “next” nodes in Fig 1.3. This makes the
skip lists that are used for the purposes of this thesis singly linked. The maximum
height of the node is established on the node’s construction. It entails a “coin flip”
at each level, and there is a 50% chance that a node will exist at the second level,
25% chance that it will exist at the third level, etc.

Searching for a node in a skip list starts with the head element at the maximum
height of that skip list. From there, it traverses forwards in the current linked list
as much as possible until it has reached a node greater than or equal to the current
key. If it is equal to the current integer, it will return true. Otherwise, it will simply
go down a level and repeat the process from that current node. As it goes down a
level, it stores the current node in the predecessors array and the next node in the
successors array. If it makes it to the bottom level and finds a node that is greater
than the key it is searching for without finding the key, then it returns false.

Section 1.3 13

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 1.3: A skip list with probability p = .5 that a node will advance to the next
level.

Figure 1.4: The path to search for 56 in the skip list from Fig. 1.3.

Inserting a node into a skip list entails determining the new node’s maximum
height, collecting a stack of predecessors and a stack of successors, and linking the
inserted node to its successors and its predecessors to the inserted node. Obtaining
the predecessors and successors happens by creating an array for each and filling it
when searching for the node’s position.

Removing a node from a skip list entails searching for the existence of that node
in the structure, then physically unlinking itself from all of its predecessors and
relinking the predecessors with the removed node’s successors at each level.

A skip list can find a node in expected O(log n) running time. The expected
maximum height of the structure is O(log n) and that the expected number of nodes
traversed per level is constant by considering the worst case running time analysis
of searching for 56 in Fig. 1.3. Note that the path to find 56 is demonstrated in
Fig. 1.4. The analysis will hold true for what is considered to be a perfect skip list.
That is, a skip list that will have at least one node with maximum height n within
the first n nodes of the skip list. The skip list in Fig. 1.3 and Fig. 1.4 serves as
an example of a perfect skip list. This is the anticipated shape of a skip list in the
general case. At a high level, this makes sense intuitively. If there are a constant
number of nodes traversed at each level and O(log n) levels, then the overall running
time should be O(log n).

14 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

The expected number of nodes traversed per skip list level will be constant. Let
X be a node found at level n in a skip list search. This node is either the beginning
of a linked list search for a node greater than or equal to the searched node, in which
the search would have just come down from an upper level of the skip list, or that
there were other nodes from which have been traversed at the current linked list
level. Suppose that n = 1, namely that searches are traversing the bottom level of
the skip list.

The expected number of nodes is at most a fixed constant, 2. Consider the case
in which A was found at an upper level. The search has searched less than 2 nodes
at level n. Now consider the case in which A is not the first node in the current
linked list traversal. As such, the node must have come from the nearest preceding
node that exists at the next level up. Seeing as all nodes have a 50% chance of
existing at the next level up upon creation, it would be expected that no more than
one preceding node in that current linked list without being at the next level up.
As such, including the current node, no more than 2 nodes to be traversed at any
given level of a perfect skip list.

1.4 Concurrent Skip List
A concurrent skip list is a linearizable implementation of a skip list. As has been
demonstrated, building a linearizably correct concurrent data structure is highly
non-trivial, particularly when it is non-blocking. As such, it is one of the most
fundamental concurrent sets and set-based maps. Most state-of-the-art concurrent
sets and set-based maps use these or closely related to these algorithms.

Lifetime of a Node
The discussion of concurrent skip list algorithms will be framed by portraying the
lifetime of a node. Nodes are created by a thread making a call to an insert method
with a particular key in the event that such a key does not exist in the structure. In
the event that the key is not in the structure the node is linked into the structure.
This is determined by making a call to searchRelink, which is a search function
that tracks lists of predecessors and successors. A node is discoverable after the node
has been inserted. It will continue to be discoverable until it a thread calls remove on
it. This method will set a flag that ensures that the node is logically removed from
the structure, though physically linked into the structure. remove makes a single
attempt at unlinking the nodes, but it will be later unlinked by searchRelink in
the event that this first unlinking fails.

Search Relink
searchRelink performs the physical unlinking of nodes in the skip list. This op-
eration keeps the structure clean and fills a list of predecessors and successors for
insertion and removal operations to utilize. Finally, it makes a determination as to
whether or not a node is present in the skip list.

Notice that unlinking a node in Alg. 3 happens in the while-loop block starting
in line 6. In unlinking a node, the searchRelink function detects that the current
node is marked at that level and will link the previous to the next node. However,

Section 1.4 15

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 3 Skip List Search Relink
1: procedure searchRelink(key, predecessors, successors)
2: current = head
3: for each level from greatest to least do
4: while true do
5: next = current.next
6: while next node is marked do
7: next_next = first unmarked node after next
8: next = next_next
9: if previous.next is not current then

10: current = previous.next
11: if previous is marked then
12: goto line 2
13: next = current.next
14: continue
15: if CAS on previous.next from current to next is false then
16: current = previous.next
17: if previous is marked then
18: goto line 2
19: next = current.next
20: continue
21: if current.key >= key then
22: break
23: previous = current
24: current = next
25: predecessors[level] = previous
26: successors[level] = current
27: return successors[0].key is key and successors[0] is unmarked

in the event that the next node is also marked, the previous node’s new successor
will still be marked and the search finds itself in the same position as before. Thus, in
order to avoid performing multiple unnecessary CAS operations to relink, we advance
the next pointer through the next_next pointer to find the first unmarked successor.
This optimization shows strong impact in high contention testing environments.
From here, we can link the previous to an appropriate next node.

In the event that the previous node is marked when unlinking a node, we restart
the search from the head element of the structure because the skip list is only singly-
linked. Such an operation is an expensive fallback and should be minimized if at all
possible.

Insert
Inserting a node in a skip list requires obtaining a list of predecessors and a list of
successors for a particular key from searchRelink. Nodes are constructed by the
insert function in the event that the node doesn’t exist in the structure. In line 2,
of Alg. 4, the random algorithm is implemented to output a level such that the
probability of an output of a node having a maximum height i is 1

2i
. From there,

16 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

the node is linked to all of the predecessors and all of the successors to the node.
Lines 8 and 9 of Alg. 4 calls setNext and casNext, which are embedded in skip

list nodes. Skip list nodes are implemented with each of these functions as built-
ins. Skip list nodes have a next attribute, which is an array of maximum height
AtomicPointers. We can use the setNext method to the successor in that the
node is not yet discoverable. In this sense, the synchronization of casNext is not yet
necessary. However, seeing as casNext changes the reference from the discoverable
previous node, this operation must be done with casNext to maintain thread-
safe synchronization. At upper-levels, linking to the successor must be done with
casNext because the current node is discoverable.

Algorithm 4 Skip List Insert
1: procedure Insert(key)
2: topLevel = random height with weighted probability
3: while true do
4: if searchRelink(key, predecessors, successors) then
5: return false
6: if toInsert == nullptr then
7: toInsert = Node(key, topLevel)
8: toInsert.next[0] = successors[0]
9: if CAS on predecessors[0].next from successors[0] to toInsert is false

then
10: continue
11: for each level from 1 to topLevel do
12: while true do
13: repeat
14: oldSuccessor = toInsert.next[level]
15: if toInsert is marked then
16: return true
17: until CAS on toInsert.next[level] from oldSuccessor to succes-

sors[level] is true
18: if CAS on predecessors[level] from successors[level] to toInsert is

false then
19: toInsert.next[level] = null
20: return true
21: else
22: break
23: return true

A node is considered to be inserted into the structure at the point at which it
is successfully linked in at the bottom level. The rest of the operation is done to
preserve tree semantics, which refers to logarithmic search. As such, in Line 16,
there is a check to see if toInsert has been marked by another thread while it is
trying to link itself to the successor at the upper-levels of the structure. If this is the
case, the current operation is successfully terminated as the node had been inserted
successfully at the bottom level because the node has been found and in the process
of being removed.

When the predecessor at a level has been removed when trying to link the pre-

Section 1.4 17

Layering and Data Partitioning Techniques for Concurrent Data Structures

decessor to the current node, which is demonstrated on Line 20, the operation must
restart following the same reasoning as searchRelink. However, we must first un-
link the current node from the its next at that level.

Contains
We do not use the searchRelink call described in Section 1.4 to implement the call
to contains. Seeing as the unlinking operation is expensive and that contains calls
are the most frequent function calls in practice, we use a fast search algorithm called
searchNoRelink in order to determine whether or not a node is in the skip list. This
operation has O(log(n)) runtime and does not have the overhead of relinking nodes
as does searchRelink. This function has an exit-fast property. That is, it does
not need to reach the bottom level in order to make a determination if a node with
a matching key is found at an upper level. Note that only unmarked nodes are
traversed in line 9 of Alg. 5.

Algorithm 5 searchNoRelink
1: procedure Contains(key)
2: return searchNoRelink(key)
3: procedure searchNoRelink(key)
4: current = head
5: for each level from top to bottom do
6: while current.key < key do
7: previous = current
8: current = previous.next
9: while current is marked do

10: current = current.next
11: if current.key is key and current is unmarked then
12: return true
13: return false

Remove
Removing a node in skip list can refer to physically removing a node, which is
performed in searchRelink and optimistically in remove, and logically removing a
node, which is the process undertaken by the remove function. A node is logically
removed if its bottom-level reference is marked. Upper-level references are marked
to notify searchRelink calls to unlink the node at that level.

remove calls searchRelink for the given key and marks the node’s references
top down. The thread that removes the node is the one that successfully places
the mark on the node at the bottom level, as can be seen in line 9 of Alg. 6. Note
that the while-loop in lines 6 and 8 are only expected to run one time each. The
while-loops ensure that no spurious CAS failures occur and that the semantics are
preserved.

Another thing to note is that an optimistic attempt is made at unlinking the
node upon a successful marking of the node in the for-loop in Line 10. That is,
an attempt at a physical removal is made immediately following a logical removal

18 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 6 Skip List Remove
1: procedure Remove(key)
2: if !searchRelink(key, predecessors, successors) then
3: return false
4: toRemove = successors[0]
5: for each level from topLevel to 1 do
6: while toRemove is unmarked do
7: CAS on toRemove.mark[level] from false to true
8: while toRemove is unmarked at the bottom level do
9: if CAS on toRemove.mark[0] from false to true then

10: for each level from 0 to topLevel do
11: next = toRemove.next[level]
12: if CAS on predecessors[level] from toRemove to next is false then
13: break
14: return true
15: return false

to keep the structure clean. It is more likely that this operation is successful under
low-contention. Furthermore, this would be desirable in that the necessary variables
to unlink the node are still accessible.

Linearizability

In inserting a node, the linearization point of having successfully inserted a node
is the point at which a node is successfully linked into the bottom level. In all
insertions, the function returns true if the script successfully performs the CAS
operation in Line 9 of Alg. 4. A node is linearizable in the structure at this point.
That is, all searches should be able to find this node after this point thereby making
it markable and unlinkable. Otherwise, the search returns false.

In removing a node, the linearization point of having successfully removed a node
is setting the bottom-level mark. Otherwise, the node is still in the structure and is
discoverable. That is, the node can be considered a partially inserted node in the
skip list, which is equivalent to a fully inserted node with a smaller topLevel than
it was initially provided. This operation is successful if line 9 in Alg. 6 is successful
and from this point forwards the function will return true, otherwise false.

If a contains call returns true, it must have been the case that the node was
discoverable. That is, it was found and it was unmarked at the bottom-level in
the skip list. If it returns false, it must have been the case that it either did not
find the node at the bottom level or that we did and its bottom-level reference was
marked.

Detecting next as being marked means that the each of its next references will
be immutable because changing it would require a CAS operation to make the node
is discoverable. Note that the mark is built into the reference itself, so both an
expected mark and reference are required when passing an expected value into the
CAS operation. However, when inserting a node, it is assumed that the predecessor
is unmarked. This can be seen in line 20 of Alg. 4.

Section 1.5 19

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 1.5: Each varying line thickness represents a different level of the skip graph
with level 0 being the thinnest and level 2 being the thickest. Each list there is a
partition the lower-level linked lists with corresponding lower-bit membership vector.
The bottom level has one list, level one has two lists, level two has four lists.

1.5 Skip Graph
Another data structure that will be heavily relied upon for the purposes of this
thesis is a skip list variant called a skip graph[4]. A skip graph is a collection of skip
lists in which each node has a fixed height, and is randomly assigned to a particular
skip list. Its structure can be viewed in Fig. 1.5. Random assignment to a skip list
means that the nodes themselves are assigned to a particular membership vector.
This vector is a series of bits defines in which linked list each node will exist in each
level.

The skip graph in Fig. 1.5 is made up of four skip lists that each have three
levels. They are (1) linked lists λ, 0, and 00, (2) λ, 0, and 10, (3) λ, 1, and 01, and
(4) λ, 1, and 11. Each skip list is made up of a single linked list per level and nodes
from each linked list are split into one of two potential linked lists at the next level
up. Each level i will have 2i linked lists. The number of lists in the upper-most level
signifies how many skip lists are in the skip graph.

Each node exists in the skip graph up to MAX_LEVEL, but each skip list in the
skip graph preserves skip list semantics. The average node height is two in any skip
list within the skip graph. However, each node will be inserted up to the top level
of one particular skip list of the skip graph. For instance, in a skip graph with
MAX_LEVEL = 5, each node will have to be inserted to level 5. Note that this means
that all nodes are in all skip lists at the bottom level.

The random placement into a particular skip list in the structure is determined
by a node’s membership vector. A membership vector is a sequence of bits particular
to each node. From here, the final MAX_LEVEL bits are used to determine in which
of the two lists at the next level up a node should exist. For example, consider skip
list (2) from Fig. 1.5. Nodes in this skip list will have a membership vector of 10.
All nodes in the structure are in the λ level of the skip graph. At level 1, nodes in
skip list (2) will be in linked list 0 as that is the first bit of the membership vector.
At level 2, nodes will be placed in linked list 10 as the next bit in the membership

20 Chapter 1

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 1.6: A four socket NUMA hardware architecture.

vector is 1, so it will be placed in the 1 partition in level 2 of linked list 0 at level 1.
Note that the bits required to be in such a list are displayed next to the list itself
in Fig. 1.5.

1.6 Non-Uniform Memory Access (NUMA)

Modern multicore computers are organized differently than the traditional memory
model. Rather than using one central location of shared memory, the term “main
memory” often refers to several individual nodes of memory associated with cen-
tralized clusters of CPUs. This is referred to as Non-Uniform Memory Access or
NUMA. In this sense, memory is distributed.

The benefit of using a NUMA system is that it is very fast to access memory
in the same NUMA node that the thread is operating in. That is, memory that is
physically in the same NUMA node as the CPU should be prioritized in order to
make a system NUMA-aware. As such, developers who look to build code that is
optimized for a NUMA system look to optimize their structures so as to make more
accesses to local, “closer” data than data in remote NUMA sockets. In particular,
that means that threads operating from a particular CPU should most frequently
access memory from a NUMA socket that corresponds to that CPU.

From a software perspective, memory in NUMA systems can be accessed in
the exact same way in NUMA and uniform memory systems. CPUs operating in
separate sockets traverse across inter-socket channels in order to access memory in
other sockets. Accessing memory in remote sockets looks consistent in software to
accessing memory in local sockets, but it is critical to update a concurrent data
structure for NUMA environments to primarily access local data.

Section 1.7 21

Layering and Data Partitioning Techniques for Concurrent Data Structures

1.7 Thesis Statement
This thesis proposes a new concurrent data structure called a layered skip graph.
The data structure is made up of a series of per-thread, thread-local sequential data
structures which are layered on top of a novel concurrent skip list variant called
a concurrent skip graph. This data structure satisfies three primary needs within
the subfield of concurrent data structures. (1) The data structure ensures that the
shared reference is small. The per-thread, thread-local data structures act as the
upper index levels of the structure and, as such, the maximum level of the shared
reference can be kept low. (2) The data structure must limit search sizes. By layering
the thread-local data structures on top of a shared concurrent reference, threads can
jump to the middle of the structure to begin their searches as opposed to always
starting from the head element. (3) In the shared structure, preference should be
given to nodes local to the current NUMA node. That is, if a thread is making a
search in the concurrent structure it should try all possible nodes within the NUMA
node that it is currently operating in before moving to another NUMA node. This
is addressed in our implementation of a novel partitioning scheme that is integrated
into the skip graph structure. The partitioning scheme partitions the data set across
NUMA nodes in such a manner so that threads will first access NUMA-local data.

Chapter 2 will discuss the contributions to the research area. In particular,
the chapter will discuss the contributions of layering and data partitioning, which
are the contributions that I have added that benefit performance. Chapter 3 will
discuss related work in the subfield of concurrent and distributed data structures
research to distinguish the contributions. Chapter 4 will go into the evaluation of
the experimentation which compares the performance of the layered skip graph to
other state-of-the art data structures. Chapter 5 will discuss potential future work
that will come out of the research that has and can be started.

22 Chapter 1

Chapter 2

Contributions

While non-blocking concurrent skip lists are advantageous in that they provide a
fast, linearizable concurrent algorithm with limited size and a relatively small search
size, the structure fails to make any guarantees as it relates to NUMA locality. This
chapter describes the layered skip graph, a new concurrent data structure made up
of a series of per-thread, thread-local sequential data structures and a novel non-
blocking concurrent skip list variant called a skip graph as a shared structure. It
will describe how these structures look and work. The chapter will also address how
the structure is capable of (1) ensuring that the concurrent data structure, the skip
graph, is limited in the average maximum level of each node; (2) searching through
the shared structure, the skip graph, minimizes the number of nodes traversed;
and (3) how preference is given to NUMA-local nodes. Furthermore, the chapter
discusses variants of the layered skip graph that further add to its advantages.

2.1 Fundamental Contributions

Lifetime of a Node
To insert a node into the layered skip graph, there must first be an attempt to
insert the node into the shared skip graph structure. Inserting a node is done first
by searching the structure. Searches, which are demonstrated in Fig. 2.1, start
from the local structure before “jumping” to the corresponding node in the shared
structure. After searching for and not finding the node, the node can be inserted
into the skip graph. If this can be done successfully, the local structure will emplace
the node into the local structure. As such, the local structure will only contain
nodes that exist in the shared structure.

Searches in the local structure also check the “mark” of the node in the shared
structure, which denotes that the shared node has been logically removed, while
traversing. As such, the local structure is kept clean of removed nodes and jumps
will only be made to nodes that are in the structure and smaller than or equal to
the desired value.

After the point at which the node has been inserted into the layered skip graph,
it is then “discoverable” until it is removed. When a node is discoverable, threads
that make a contains or search call for that node should return true. Contains calls
are the equivalent to a call to search that return true if the key of the node returned
by the search matches the key being searched for. Removing a node from the layered

23

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 2.1: Demonstration of a search operation through the layered structure.
Searches start in a thread’s thread-local structure before the thread starts searching
the shared structure from the closest node in its local structure.

skip graph simply entails making a call to the skip graph’s remove method. If a node
has been removed from the skip graph, it will be marked and will be removed from
the local structure lazily through the next search call that traverses its key.

Layering
Layering refers to a data structure design technique in which a concurrent “refer-
ence” is maintained under a series of lazily maintained, thread-local upper levels
to a concurrent data structures. The layered structure is made up of per-thread,
thread-local sequential data structures. C++ maps combined with a fast imple-
mentation of a hash table[3] have worked well as sequential data structures in the
layered skip graph. That is, by inserting into both a C++ map and a fast hash ta-
ble, the benefits from very fast existence checks, from the hash table, outweighs the
overhead of inserting into both the hash table and the C++ map. The thread-local
maps map the actual data, which is stored as the key, to their corresponding node
in the skip graph, which is stored in the value. As such, “jumps” to shared nodes
requires simply following the reference of the value in the key-value pair.

Using a layering technique in concurrent data structure design helps to address
the first concern; concurrent data structures should be limited in size. The thread-
local structures emulate the upper-levels of the skip list in that they act as “fast-
lanes” for threads to traverse through. The fact that the structure is thread-local
means that it can use its most highly optimized CPU local cache to perform op-
erations. Recall that in a concurrent environment variables must be atomic which
makes them slower to update as caches must be acquired in exclusive mode. Further-
more, using thread-local data structures allows for the user to plug which ever data
structure they find most optimized for their task into the structure which makes the
structure highly adaptable for the user’s purposes. The specifics as to the bounds
of just how big the skip graph is will be discussed in greater detail in the discussion
of the skip graph contribution.

Layering also addresses the second concern of concurrent data structure design;
ensuring that searches are limited in the number of shared nodes they traverse.
The local structures are utilized to give a good starting point to begin searches and

24 Chapter 2

Layering and Data Partitioning Techniques for Concurrent Data Structures

allow approximations of the previous node in the shared structure. Recall that, in
the skip list search algorithm described in Sec. 1.4, threads traverse as far as possible
in the upper-most level before moving down a level in the search. Also note that the
number of nodes at the upper-most level will be inversely related to the height of the
upper-most level. To demonstrate this point, consider a skip graph with maximum
level n. It is true that the first n − 1 levels of this skip graph is also, itself, a skip
graph with half as many lists in the upper-most level, but that each of these lists will
be twice as dense as they are at level n of the original skip graph. As such, seeing
as the upper-most level must be kept low to satisfy the first requirement, limiting
traversals at this level is crucial to limit the overall number of nodes traversed in
the skip graph.

Additional benefits of this phenomenon are that layering disperses threads
throughout the skip graph rather than forcing them to begin all searches from the
head element and that threads are able quickly to approximate a previous element.
Dispersion in the skip graph is advantageous in that it will limit the amount of
contention for nodes along the path for a particular element. This is particularly
beneficial when two threads are searching for the same node in that they will not
perform CAS operations on the same data. Making approximations of the previous
node is beneficial when a very specific case of CAS operation failure. Namely, when
changing the reference of a previous node and determining that the previous was
marked as was discussed in Sec. 1.4, approximating the preceeding node significantly
minimizes the cost of this expensive case.

Concurrent Skip Graph
Developing a concurrent skip graph also required building a concurrent skip graph.
The skip graph is built on-demand at compile time given the testing environment.
This is done to preserve the invariant that the maximum level of a skip graph being
operated on by t running threads will have a maximum level of log2(t) − 1 (there
are log2(t) total levels when counting the bottom-most level as level 0). This means
that, for an environment with 8 threads, the upper-most level of the structure will
be level 2. Recall that, in such a structure, there would be four linked lists in the
second level of the structure. By having log2(t)−1 levels, there will be half as many
lists at the upper-most level of the skip graph as there are threads.

Recall that, in a skip graph, all nodes exist at the upper-most level of the struc-
ture. That is, if 8 threads are operating, then all nodes will exist at three levels of
the structure or log2(t) levels for t threads. In a skip list, however, nodes will exist
in a constant 2 levels on average. While it is true that for most cases, the aver-
age maximum level of nodes in the skip graph will cause unwanted overhead, the
other benefits from the design of the structure still proves advantageous. The sparse
skip graph was developed to further combat this discrepency, and it is described in
Sec. 2.2.

In a skip graph, nodes have a similar lifetime as they do in the overall layered
skip graph structure. Nodes are inserted by first searching the structure to see if the
desired node is in the structure. Recall from Sec. 1.4 that it is advantageous to have
two distinct searching methods, one searchRelink that finds a node while lazily
cleaning the structure of logically removed nodes and one searchNoRelink that
leaves logically removed nodes in the structure while only searching for the desired

Section 2.1 25

Layering and Data Partitioning Techniques for Concurrent Data Structures

key. Note that these two methods can take advantage of good starting locations
provided for by the thread-local data structures when the skip graph is applied to
the layered skip graph. In an insertion, searchRelink is used. After the search,
nodes are linked to their successor and predecessor nodes similar to the insertion in
Sec. 1.4.

After a node is linked into the structure at the bottom-most level, that node
is discoverable. That is, it can be found by calls to contains or searches un-
til it is removed1. Calls to contains are made with the faster searching method,
searchNoRelink. To remove a node, the node is to be found by a searchRelink
call. Afterwards, the node is logically removed at the point at which the mark is
set at the bottom-most level. At that point, an optimistic attempt at unlinking the
node is made and the node can be lazily unlinked by search methods.

Full algorithmic details can be found in Appendix B.
This thesis does not provide a formal proof that the non-blocking concurrent

skip graph is linearizable. With that said, here is an intuition that it is. Seeing as a
skip graph is a collection of embedded skip lists, pick the skip list that is currently
being operated on by a set of operations and a set of threads. Now, apply any and
all arguments of linearizablity from the non-blocking concurrent skip list to this skip
list. This same argumentation can be applied to all skip lists in the skip graph, and
as such the skip graph must be linearizably correct.

Partitioning Scheme
The partitioning scheme applied to the concurrent skip graph allows for the dataset
being added to the data structure to be partitioned stratgically to produce NUMA-
locality. The broad idea is to monitor which threads can operate on which skip lists
within the overall skip graph. By doing so, each skip list within the skip graph
will only be shared by 2 threads, while lower levels are shared by increasingly more
threads. That is, for each level i from 0 to the maximum level of the skip graph,
there will be t/2i threads operating in each list within that level.

Each node in the skip graph will have a membership vector that is defined to
be a uint64_t with the lower-order bits being filled the reversed threadId and the
higher-order bits filled randomly. That is, a node that is inserted by threadId =
1 will have a membership vector of 61 random bits followed by 100 if maximum
level is 2. Note that this would place nodes into skip list (1) from Fig. 1.5 along
with nodes inserted by threadId = 0. The membership vector for nodes inserted
by threadId = 0 would have a membership vector of 61 random bits followed by
000.

Note that this design ensures that only two threads will operate in the upper-
most level of any particular skip list within the skip graph. That is, the data will be
partitioned across the skip lists within the skip graph by the thread that inserted
that data. At the next level down, the linked list will be shared by four threads and
so on. As such, more contention is introduced by traversing in lower levels of the
skip graph because the linked list that is traversed will be shared by more skip lists
and, as a result, more threads.

1Notice that this means that nodes could be removed before the node is fully linked into the
structure. A node is only inserted into a thread’s thread-local data structure if the node is fully
linked into the shared structure in the layered skip graph.

26 Chapter 2

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 2.2: The following is a representation of a hierarchical NUMA architecture
with 2 NUMA nodes, 8 CPUs and 16 hyperthreaded cores.

This organization of a skip graph allows for strategic data partitioning. That is,
storing the data from the data structure in a strategic location in hardware. Suppose
a NUMA machine supports hyperthreading; hyperthreading is a type of CPU that
has two instruction pointers and can, thus, support two threads. Recall that NUMA
means that each socket has its own associated memory. By ensuring that all data in
the uppermost level of the structure is in the same location in memory, the structure
is NUMA-aware. That is, threads allocating memory from a particular CPU will
allocate memory within that CPU’s associated memory.

The current state of NUMA technology is commonly separating distinctive
NUMA sockets, each with their own CPUs that have hyperthreaded cores. Cre-
ating a hierarchical scheme for partitioning data and where threads will operate on
data is currently optimal for this architecture. It is also highly adaptable to other
potential hierarchical architectures that may be designed in the future, which is key
in successful systems design. For example, the structure would still have an optimal
memory-access in the event that hyperthreading technology were to progress to the
point at which it is more common to have more than two hyperthreaded cores per
CPU if the maximum level of the structure is changed. Alternatively, consider the
fact that memory were to be further distributed beyond the original splitting of
NUMA nodes. The structure can be configured to still access the closest memory
most frequently.

The thread pinning strategy which obtains optimal performance comes from
pinning threads that share the upper-most level of the skip graph to hyperthreaded
cores in the same CPU, Partition 1. Partition 1 pins ensures that the two threads
that share the uppermost level in the skip graph will be pinned to CPUs that are
physically closest to one another. That is, seeing as Thread 0 and Thread 1 share
the upper-most level of the skip graph, they will be placed in adjacent CPUs. This
is the default configuration. This thesis demonstrates that there are several other
partitioning schemes to demonstrate the benefit of Partition 1. They are as follows:

1. Partition 1: Threads that share their upper-most level in the skip graph are
placed in adjacent CPUs.

2. Partition 2: Threads that share their upper-most level in the skip graph are
placed in the same NUMA node, but in not adjacent CPUs.

Section 2.1 27

Layering and Data Partitioning Techniques for Concurrent Data Structures

3. Partition 3: Threads are pinned to random CPUs.

4. Partition 4: The opposite of Partition 1. Threads are pinned to corresponding
CPUs in the furthest NUMA node. This partition is intentionally bad to
demonstrate the effects of cross NUMA node traversals.

5. Partition 5: Threads are not pinned to CPUs.

The partitioning scheme on which a skip graph runs is determined at compile
time. As such, the data structure is easily adaptable to any particular machine to
optimize its pinning strategy.

Figure 2.3: A skip list stored in memory in a NUMA machine.

Figure 2.4: A skip graph with the Partition 1 partitioning scheme stored in memory
in a NUMA machine.

As a result of the partitioning scheme, it is trivial to know how a skip list will
be stored in memory as compared to a skip graph. This can be viewed in Fig. 2.3
and 2.4. In particular, the lack of locality in a skip list can be noticed in Fig. 2.3.
Notice how, in the first level of the skip list, the nodes are 13, 24, 62, 88, and 95.
To traverse across this level, a thread must travel from the top left socket to the
bottom left socket, the bottom left socket to the top left socket, the top left socket

28 Chapter 2

Layering and Data Partitioning Techniques for Concurrent Data Structures

to the top right socket, and from the top right socket to the bottom right socket.
There is no ordering nor restrictions to where a thread might have to travel within
the system in order to find a node.

In the skip graph from Fig. 2.4, however, notice that there is an ordering to where
these traversals can be made. At the upper-most level, where nodes are shared by
two threads, threads can only ever traverse within that particular NUMA socket.
At the next level down, threads can only traverse with the socket to which they are
horizontally aligned. It is only at the bottom-most level where threads can traverse
to any point in memory in the system.

Note that threads do the fewest traversals at the bottom-most level, thereby
making such traversals the most rare. Also notice that there is no reason why, at
the middle level, threads necessarily traverse horizontally. As such, the partitioning
scheme can be configured to pin threads to NUMA sockets with the closest corre-
sponding socket to maximize the hardware efficiency of the NUMA system. As such,
the partitioning scheme effectively accomplishes the third goal of concurrent data
structure design - that local nodes are given preference - is satisfied.

2.2 Variant Contributions
Sparse Skip Graph
The sparse skip graph was developed to mitigate the negative performance effects of
the skip graph. This structure is built the same way as a skip graph, but each node
is given a random node maximum height as is done in a skip list. As such, the skip
graph is significantly more spare than a normal skip graph. More importantly, The
same guarantee can be made about the average maximum height of a node in the
sparse skip graph that we can make in the skip list. The sparse skip graph can be
viewed in Fig. 2.5.

Designing this skip list and skip graph variant is motivated by the overhead of
performing insertions and removals in skip graphs as opposed to skip lists. Inserting
or unlinking a node has significantly more overhead in the skip graph than it does
in the skip list. Furthermore, skip graphs are much denser structures, so creating
a skip graph with a maximum level of 5 is much memory intensive than a skip list
with a maximum level of 5. However, skip lists do not provide the opportunity to
use a membership vector.

Lazy Layered Skip Graph
Throughout the research process, it became clear that most state-of-the-art non-
blocking concurrent skip lists took advantage of a similar lazy pattern. That is,
nodes would be inserted at the bottom level of the structure only and some external
lazy mechanism would later “raise the towers” of each node. Many times, this has
been done through the use of a background thread (see Chapter 3). Time and time
again, it has been demonstrated that such techniques are incredibly effective under
high contention, but tend not to scale with the same effect for low contention tests.
This was the inspiration for designing a lazy version of the layered skip graph.

Nodes have nearly same definition in the lazy layered skip graph as they do in
the layered skip graph. However, nodes are given an additional flag that is used

Section 2.2 29

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 2.5: The following is a representation of a sparse skip graph. Note that it is
both partitioned and that nodes have an average maximum height of two.

for flip operations in the lazy layered skip graph. Flip operations are insertions and
removals on a node without setting the mark. Instead, insertions or removals modify
the additional flag on nodes with the same key that are in the structure so that the
node will never be physically removed as a result of a flip operation.

As such, the lifetime of a node in the lazy layered skip graph looks different
than it does in the layered skip graph. To insert a node into the lazy layered skip
graph, a thread must search to see if the node is in the structure. This operation is
identical to the layered skip graph. However, upon determining that the node does
not exist in the structure, the node will then only be inserted into the bottom level
of the skip graph and the thread’s thread-local structure. At this point, the node is
discoverable. Contains calls are done the same in both the lazy layered skip graph
and the layered skip graph.

When the node is discoverable, it can be removed. Removals in the lazy layered
skip graph work by setting the additional flag on the node from false to true. At
this point, the node is removed from the structure, but the same physical node can
be once again inserted without allocating any new memory. Other insertions can
come through and find the node in the structure and “flagged,” at which point they
flip the flag back from true to false and the node is once again inserted in the
structure. This process can happen several times.

The mark on the node can still be set. This happens when a node has been
discovered by a thread searching for a node from a skip graph remove method call
after the node has been in the structure for a pre-specified period of aging. After a
the node’s mark has been set, it can no longer be flagged and it can be unlinked.
Any further insertions to this key will once again have to allocate memory.

A node’s towers can also be lazily raised. This is done when the node is discovered
to be unmarked in the skip graph by a search from the local structure, even if the
node is flagged in the skip graph. In the event that this happens, the thread will
attempt to link the node to its predecessors and successors in the skip graph as has
been described in Sec. 2.1. Notice that only the thread that initially inserted the
node will be able to raise its towers as only that thread will have added that node
to its thread-local data structures.

30 Chapter 2

Layering and Data Partitioning Techniques for Concurrent Data Structures

As such, this thesis will be working with the following data structures:

Skip Graph Sparse Skip Graph
Traditional Layered Skip Graph Layered Sparse Skip Graph

Lazy Lazy Layered Skip Graph

Notice that there is no Lazy Layered Sparse Skip Graph implementation. As it
turns out, making such an algorithm has several small design decisions that were
crucial for its correctness. Given more time, this is an area of future study.

2.3 Applications
The ideas discussed in Sec. 2.1 and Sec. 2.2 each can be applied into different data
structures in practice. In particular, this thesis will look at how each can implement
maps and priority queues.

Maps
Notice that the algorithms described in the table at the end of Sec. 2.2 all implement
a set or map. That is, nodes in the skip graph or variant structure contain a key
and a value and can store data as such. To implement a set, a user would simply
not pass a value.

Priority Queues
The question of building concurrent, scalable priority queues has been considered
by many to be an irreconcilable problem in concurrent computing. A priority queue
is a data structure that removes the absolute minimum element in the structure. In
a concurrent priority queue, there can only be one linearizably minimum element
in a particular key space at any particular moment in time. This means that only
one thread out of t can correctly remove the absolute minimum node at a time if t
threads attempt to remove the absolute minimum while t− 1 threads would fail.

Several approaches have been proposed to mitigate this problem, such as re-
laxing the demands of linearizability or the semantics of removing the linearizably
absolute minimum node. This thesis considers the approach of relaxing priority
queue algorithms utilizing skip lists as the primary backbone of their architecture.
In particular, it examines how the layered skip graph model can provide improved
performance. In particular, the discussion will be focused on the Spray List [1].

In order to best counteract the scalability paradox in concurrent priority queues,
the Spray List introduces a random walk at each level in order to “spray” threads
across the data structure to a bounded “minimum.” By doing so, the Spray List
approximates the absolute minimum rather than ensuring that the linearizable ab-
solute minimum is removed. There is a trade-off to be had with proximity of a node
to the absolute minimum and the contention for an element. That is, the proxim-
ity of the largest “minimum” node that threads are allowed to remove to the true
absolute minimum is inversely related to the amount of contention. If threads must
remove the true absolute minimum, there is the most contention for the “minimum”
element and if there is no constraint on the “minimum” element (i.e. threads can

Section 2.3 31

Layering and Data Partitioning Techniques for Concurrent Data Structures

remove any node in the structure) there is the least contention. The goal for cre-
ating a scalable implementation of a concurrent priority queue is to both minimize
the potential element space in which the node can be found as well as creating an
algorithm that scalably increases in performance as thread counts increase.

The Spray List’s contribution comes from the bound for the largest possible
absolute minimum element that could possibly be removed by their spraying tech-
nique, which they define to be Θ(t log t). The goal of my research is two-fold when
considering concurrent relaxed priority queues. It would be an improvement from
the Spray List by (1) making the same guarantees of maximum possible removed
element with a scalably better overall performance or by (2) creating a bound closer
to the linearizable absolute minimum element while still scaling as in performance
at higher thread counts.

Algorithm 7 Spray List RemoveMin - Skip List
1: procedure RemoveMin
2: Pick random number [1, t] where t is the number of threads
3: if Random number is threadId then
4: ▷ Cleaning policy described in [1]
5: Clean
6: while true do
7: level = MAX_LEVEL
8: while level >= 0 do
9: r = random number [0, log t]

10: Walk r unmarked nodes
11: level -= max(1, ⌊log t⌋)
12: if node is tail then
13: return false
14: if node.mark() then
15: return true

First, this thesis will consider the goal of attempting to improve the overall per-
formance of the Spray List while preserving the same guaranteed maximum bound.
In order to do this, it is necessary to demonstrate how the analysis can hold. First,
it is important to note that such a bound can hold for a skip list. This point has
been proven in the Technical Report associated with the Spray List [16]. Seeing as
the skip graph is a series of interwoven skip lists, any analysis made on the Spray
List holds for the structure because threads operate on a single skip list of the skip
graph during its execution. A formal theorem for this claim is made in [19]. The
description in this thesis will provide an intuition of said theorems and associated
proofs.

Recall that the skip lists in the skip graph are both NUMA-aware and minimize
contention between threads at upper-levels of the structure as a result of the par-
titioning scheme employed in the skip graph. Furthermore, note that threads are
operating on t/2 different skip lists at the upper-most level. As a result, the expec-
tation is that the Spray List algorithm applied to this structure will achieve even
greater dispersion throughout the structure with the same bounds in place because
threads are operating on entirely different skip lists. The anticipation would be that
the structure would significantly outperform the Spray List algorithm applied to a

32 Chapter 2

Layering and Data Partitioning Techniques for Concurrent Data Structures

skip list.

Algorithm 8 Spray List - Skip Graph
1: procedure RemoveMin
2: Pick random number [0, t− 1] where t is the number of threads
3: if Random number is threadId then
4: ▷ Cleaning policy described in [1]
5: Clean
6: while true do
7: level = MAX_LEVEL
8: while level >= 0 do
9: r = randomly pick zero or one

10: find r-th unmarked node
11: level -= max(1, ⌊log t⌋)
12: if node is tail then
13: return false
14: if node.mark() then
15: return true
16: else
17: traverse forwards one unmarked node
18: if node.mark() then
19: return true

By making a few key modifications to the algorithm proposed by the Spray List,
which can be seen in Alg. 8, this thesis claims that threads will not need to spray
as far to obtain a node to remove while still maintaining scalable performance. The
formal proof, again, can be found in [19].

Instead of spraying for a random number of nodes r as is done in line 9 of Alg. 7,
the algorithm will instead merely find the first or second unmarked node, which is
decided randomly, and try to mark nodes “along the way.” This means that a thread
optimistically attempt to mark each node that it finds. Only upon failing to mark
that node will a thread go down a level and try again. At the bottom-most level,
threads traverse forwards an additional node if they fail so as to avoid having to
restart the entire spray.

Note that threads will only contend with one other thread at each level of a
perfect skip graph structure. That is, when a thread makes an optimistic attempt
at removing a node at the uppermost level, it will contend with one other thread
at most. At the next level down, the thread will share the list with three other
threads, but seeing as one thread has already won a node at the uppermost level of
each partition, the two remaining threads will only compete with one another for
the node at the next level down. This is demonstrated in Fig. 2.6.

A perfect skip graph is defined as a skip graph in which every t/2 nodes are put
in different skip lists of the skip graph. In a perfect skip graph with the NUMA-
aware partitioning scheme, each thread will contend with one other thread for the
minimum node in the upper-most level of their skip list. Seeing as one thread will
succeed at this level, only half the threads will move down a level to contend for
the smallest unmarked element at that level. As such, this level will once again be
contended for by no more than two threads. This process will repeat itself until the

Section 2.3 33

Layering and Data Partitioning Techniques for Concurrent Data Structures

bottom-most level where, upon failing, the single remaining thread will once again
move forwards to the next unmarked node and it will have its solution.

Figure 2.6: The pattern by which threads would remove nodes if all 8 threads were
removing. Note that one thread will win and one thread will lose contended nodes.

Such a policy will only pay off in the event that the optimistic marking of nodes
does not devolve into the initial priority queue paradox of having t−1 out of t threads
fail. In a concurrent data structure that does not have the NUMA-aware partitioning
scheme, like a skip list, these guarantees about reduced contention cannot be made.
As such, such a policy is unique to the NUMA-aware partitioning scheme and fully
takes advantage of the structure of the skip graph.

Recall once again that using the partitioned skip graph structure already gives
threads much of the dispersion that they obtain from the skip list-based spraying.
This means that making a traversal of size L to spray through the structure is not as
necessary as it might have been in a traditional skip list-based structure. Instead,
threads can simply traverse to the first unmarked node of whatever level they are
currently opearting and attempt to mark that node while contending with at most
one other thread in a perfect skip graph environment while failing log(t) times at
most and twice in expectation at all levels above the bottom-most level and traverse
one more time upon failing at the bottom-most level. This means that, in analyzing
the structure under perfect conditions, the structure will remove one of the first t
nodes with t threads executing.

Furthermore, the skip graph variant of the algorithm minimizes the number of
CAS operations needed per successful spray operations. The reason for this, again,
is explained in [19]. Essentially, the CAS operations performed in the Spray List
algorithm reduces to a “balls-in-bins” problem, making the expected number of
CAS operations per removal logarithmic. However, by attempting to mark nodes
along the way, the variant algorithm performs a constant two CAS operations on
expectation per operation.

34 Chapter 2

Chapter 3

Related Work

At this point, this thesis will discuss related work in the field of concurrent skip
lists. The goal of this section is to highlight major contributions in the areas of
concurrent data structure design, concurrent priority queues, and developments in
NUMA-awareness. This section will also highlight some of the distinctions between
the work of other groups from the work proposed in this thesis.

3.1 Skip Lists
Skip lists were first introduced by [17]. Modern state-of-the-art lock-based skip
lists are variants of [15]. The first lock-free skip lists were introduced and patented
by [18]. The algorithms of this skip list are those that are discussed in Sec. 1.4.
Skip graphs were introduced in [4]. Somem of the best performing state-of-the-art
lazy skip list algorithms, which tend to perform very well under high contention, are
described in greater detail below.

No Hotspot
No Hotspot [7] is a state-of-the-art skip list implementation that proposes the de-
coupling of tasks in insertion and removal operations. In particular, this means that
inserting a node means simply inserting a node into bottom level of a skip list be-
fore returning. From here, a background running thread is tasked with “raising the
towers,” or inserting nodes at levels above the bottom-most level of the structure, of
all nodes and fills in the upper levels of the structure entirely contention-free. That
is, the threads running in the structure do not “raise the towers” of the skip list to
simplify their task. In removing a node, running threads are pegged with the task
of setting the mark of the node and then, again, relying on a background thread to
physically remove marked nodes.

No Hotspot demonstrates particularly effective performance in a high-contention
environment. That is, the structure performs well in write-intensive environments
with a high-collision key space. In such an environment, the task of raising towers
and physically removing nodes from the structure is manageable as a result of the
key space. However, it is anticipated that such a structure will perform poorly in
low-contention environments for two reason. Namely, (1) the task of raising towers
is spread across a larger space making the task a lot larger and (2) the fact that the

35

Layering and Data Partitioning Techniques for Concurrent Data Structures

task of the background thread is larger means that it will be harder to preserve skip
list semantics.

Inspired by this implementation of a skip list, a variant of the layered skip graph
called the lazy layered skip graph was built in the research leading to this thesis. The
lazy layered skip graph is particularly well-suited for high-contention environments
and takes advantage of the idea of lazily raising node towers while still maintaining
NUMA-aware skip graph data partitioning and thread-local layered data structures.
However, the implementation described in this thesis is different than that of the No
Hotspot skip list in that a background thread is not used. Instead, the lazy layered
skip graph’s towers are raised in the layered interface when searching the local data
structure. In searching for a node in the local structure, a node’s towers are raised
if it’s found to be not fully inserted in the shared structure. Full implementation
details are provided in Appendix B.

Rotating Skip List
The Rotating Skip List [11] is a state-of-the-art skip list made up of “wheels” as
opposed to nodes to minimize contention. Wheels are another way to consider a
series of next pointers, but the bottom level of the structure is fluid. There is a
counter from 0 to the maximum level of the structure that reset when overflowing
the maximum level. If node i has a maximum level of ni, then for any counter value
c, the current bottom level of the node is c%ni and all pointers will follow that
pattern. From time to time, a background thread will increment this counter, which
will mean that threads will have different positions in the structure. This gives a
means of dispersing threads to reduce contention.

Wheels are cache efficient and give the effect of rotating trees in a sequential
environment that self balance. The utilization of wheels means that entire linked
lists of the structure can be temporarily removed from the structure in constant
time. This allows for synchronization within that linked list by freezing its state
and allowing for a single thread to update it contention-free.

A background thread exhibits similar behavior to that of the background thread
in No Hotspot. In both structures, the background thread is tasked with raising the
towers of a node. In the context of the Rotating Skip List, this refers to the cache-
efficient wheels. A key difference between the background thread in the Rotating
Skip List is that it operates lazily to minimize contention. That is, it will operate
maintenance operations on all data after sleeping for a fixed unit of time to minimize
contention with active threads in the structure.

The strategy of rotating levels in and out of a structure will largely benefit a
structure in which a background thread maintains nodes within a structure. As
such, the idea of rotating does not directly pertain to the structure described in
this thesis as background threads for data maintenance are not employed. However,
the application of a grace period before nodes have their towers raised in the lazy
layered skip graph implementation is considered.

The layered skip graph and related structures do not adopt the practice of ro-
tating pointers. For one, this design adds lots of complexity to the overall structure
and is not typically adopted. Furthermore, the skip graph already disperse threads
throughout the structure without this complexity. However, the practices of build-
ing cache efficient skip list structures was highly influential in how data is aligned

36 Chapter 3

Layering and Data Partitioning Techniques for Concurrent Data Structures

within nodes and across nodes in the layered skip graph structure.

3.2 Priority Queue
This thesis has given extensive discussion of [1] in Sec. 2.3. The Spray List provides
one means of developing concurrent priority queues by relaxing the definition of ab-
solute minimum. In so doing, contention is minimized by allowing multiple threads
to successfully remove different “minimum” nodes. This thesis proposes a means of
relaxing the definition of absolute minimum that (1) out-performs the Spray List
and (2) removes elements that are closer to the absolute minimum.

Another approach that effectively works to minimize the contention in a priority
queue with a relaxed absolute minimum is through an elimination array [5]. The
technique works by having a producer-consumer array where an inserting thread
adds nodes that are “close” to the absolute minimum for removing threads to con-
sume. This works well, as the task of performing CAS operations to link the node
into the structure are eliminated, and the node will never need to be unlinked. Such
a situation would linearize in the following way: (1) the inserting thread inserts an
element into the structure; (2) the removing thread instantaneously finds the node
and removes it. The issue with this technique is that determining the cutoff between
“close” and “far” nodes is computationally expensive to ensure that the protocol is
utilized enough to scale. This approach was adopted in the research leading to this
thesis with promising results, as the layered skip graph can be used to approximate
this barrier, though the contribution could not be stated clearly.

There are other ways of minimizing contention for the absolute minimum element
in building a concurrent priority queue. In fact, several techniques were considered in
the research for this thesis. The technique of flat-combining was proposed by [13].
The idea is to minimize the contention for the head element by filtering threads
through a tournament so that only on thread would ever remove nodes at a time.
This is beneficial in that it means the true absolute minimum will be removed
by a single thread. However, two glaring issues made this technique difficult to
implement in practice. For one, the protocol is blocking, so threads that are not
actively removing nodes have nothing to do, which wastes CPU resources on those
threads and hurts overall performance. It is possible that threads could “clean” the
structure while waiting, or unlink logically marked nodes, but it turns out that this
pushes the issue of contention onto the task of cleaning up the structure. There
are no other obvious tasks to be done while waiting. The other issue comes from
the scalability of a single thread needing to altrusitically serve n − 1 threads while
making the structure inaccessible to any other thread while the serving thread is
operating. Resolving this issue adds complexity and does not necessarily guarantee
scalability1.

Another approach to mitigate the issue of building a concurrent priority queue
with minimal contention for the absolute minimum element is to relax the defini-
tions of correctness. In [14], Chapter 3 discusses alternative concurrent correctness
properties with more relaxed definitions that linearizability. It may be possible to
develop a concurrent priority queue that is quiescently consistent or sequentially
consistent, as is described in the chapter, and correctly scale while removing the

1With that said, this is an area of potential future work as early as Summer 2020.

Section 3.2 37

Layering and Data Partitioning Techniques for Concurrent Data Structures

absolute minimum element. However, such an implementation is not trivial in how
it would even look, and was not seriously pursued in the research leading to this
thesis.

3.3 NUMA
NUMA-aware concurrency has spanned across several areas of development. NUMA-
aware synchronization mechanisms, like the locks proposed in [6] and [10], ensure
that priority is given to waiting threads based on their NUMA distance to the lock
itself. The development of NUMA-aware skip list (NUMASK) was first done in [8]
and is discussed in greater detail below.

NUMASK
NUMASK is a state-of-the-art NUMA-aware skip list. It was produced around the
same time as the layered skip graph. NUMASK builds a skip list in which the
bottom level is separated across NUMA nodes. However, each NUMA node also has
an “intermediate layer,” which a complete replica of the bottom level of the skip
list. Similar to the No Hotspot skip list, a background thread observes insertions
to the bottom level of the skip list and physically unlinks nodes. It notifies each
intermediate layer of insertions by pushing instructions onto a per-intermediate-
layer queue. Each intermediate-layer-queue is maintained by a per-NUMA-node
background thread which updates the intermediate layer for its respective NUMA-
node. After doing so, the per-NUMA-node background threads lazily raise the
towers within its NUMA node in a manner inspired by the No Hotspot skip list.

As a result of background threads lazily raising node towers, NUMASK exhibits
similar performance to No Hotspot. However, the architecture is NUMA-aware and
exhibits certain advantages for high-performance computing in NUMA. The sim-
ilarities suggest that NUMASK will perform particularly well in high-contention
environments, but its advantages will diminish in lower contention testing environ-
ments.

Though developed at similar times, the idea of a data structure local to a par-
ticular NUMA node was not necessarily inspired by NUMA. This is evident in the
differences between the two architectures. In order to maintain its semantics, NU-
MASK replicates data from the upper-levels of the skip list and the intermediate
layer throughout each of the NUMA-nodes. As such, it is much more space inten-
sive. By using a skip graph as opposed to a skip list, nodes are only inserted once
in the overall structure and data replication across NUMA-nodes is not necessary
in order to preserve NUMA-aware semantics.

Furthermore, the local data structure in NUMASK is the upper levels of the
overall skip list, which is itself a skip list. In this sense, NUMASK would the
equivalent of layering the same thread-local skip list in the structure proposed by
this thesis on top of a concurrent linked list with intermediate layers for each NUMA-
node. The structure proposed by this thesis is more adaptable in that it allows for
the upper levels of the skip list to be represented by faster data structures, which
allows for faster searches in ultimately accessing the true representation of data in
the shared bottom-level.

38 Chapter 3

Chapter 4

Evaluation

4.1 Testing Procedures
Tests are run on two different hardware architectures. One, which will be referred
to from here forwards as the “local cluster,” has 2 NUMA sockets, 16 Intel Xeon
E5-2620 cores, which have hyperthreading capabilities thereby giving us access to 32
hardware threads, each running at 2.0-2.5GHz, which varies due to TurboBoosting,
and 128GB of memory. The other, which will refer to as the “remote cluster,” is a
system with 2 Intel Xeon Platinum 8275CL CPUs, each with 24 cores running at
3.0GHz (96 hardware threads total). The system has 192GB of memory and two
NUMA nodes. The tool numactl –hardware reports intra-node distances of 10 and
internode distances of 21. The system runs Ubuntu Linux 18.04 LTS with kernel
4.15.0.

The methods described in this thesis use thread pinning to the advantage of the
structure. Thread pinning refers to the practice of ensuring that a single thread oper-
ates on only one CPU at a time. Thread pinning can produce stronger performance
results in that it ensures a level of predictability of a thread’s memory and makes
better use of local CPU caches as threads do not migrate across the system. It makes
sense to utilize thread pinning in concurrent programming for NUMA because the
policy ensures that threads do not migrate across NUMA sockets and make slower
accesses to memory inserted by that thread, which would be advantageous for the
overall application as a whole.

4.2 Testing Environment
The code must be compiled with clang++-std=c++14-O3, which is the highest level
of optimization that can be passed to the Linux compiler. From here, the output
executable is run with several arguments. Namely and in order they are the fol-
lowing: number_threads, protocol, percent_insert, percent_remove, percent_
contains, preload, element_space, number_of_operations, time, and the “ar-
chitecture string” (optional if __linux__ is not defined).

This thesis proposes five potential options for the protocol token. It can be
operations, clustered_operations, time, clustered_time, or synchrobench.
The options clustered_{operations,time} mean that threads will be tasked with
a particular operation and run on that operation only. That is, if a thread is
tasked with insert, then it will only call the insert method, etc…. The options

39

Layering and Data Partitioning Techniques for Concurrent Data Structures

operations and time mean that threads will run for a preselected number of op-
erations or for a preset amount of time. After considering the advice of conference
reviewers, it was determined that most results will be run through the synchrobench
[12] protocol seeing as it is the uniform industry standard.

The “architecture string” is made up of the number of NUMA sockets; a comma;
the number of cores in each of the sockets delimited by commas; a dollar sign as
a delimiter; and the core id to which a thread i will belong if i is the index of
the cores, which are delimited by pipes. For instance, on our local cluster, the ar-
chitecture string for Partition 1 is the following: 2,16,16$0|16|1|17|2|18|3|19|
4|20|5|21|6|22|7|23|8|24|9|25|10|26|11|27|12|28|13|29|14|30|15|31|. In
this case, thread with id 0 will run on CPU id 0, thread id 1 will run on CPU id 16,
etc…. This string is created on demand using the Linux built-in file /proc/cpu_info
by a Python 3 script called cat.py. It is through this string that a hardware-aware
architecture can be built to help with the overall performance of the structure.

The tests are run through a main file called Tester.hpp in the repository. This
script reads through the arguments to assign global testing variables, creates threads
and their corresponding thread function, parses through the “CPU Info” argument
to set thread affinity to a particular CPU, runs and joins threads.

Thread functions track several counting variables that are used for the analysis.
In particular, each thread counts the success or failure of each function and the
totals are accumulated at the end. This is done so as to avoid paying to write
to a synchronized variable while the thread is running so as to ensure the most
parallelism between threads as possible1. These values are aggregated into a global
atomic counting variable after threads are joined to ensure thread safety. These
variables allow for assessments about overall running performance.

The infrastructure in place is designed to keep a much more in-depth analysis
about the performance of the structure if the compiler directive STATS is defined.
However, it is important to note that only make per operation assessments can be
made when running and counting these metrics. The additional counting metrics
add a significant amount of overhead to the overall running time of any particular
operation. Such metrics include nodes per search and locality metrics.

4.3 Performance
Overall throughput is calculated by measuring the number of operations per mil-
lisecond. An operation is considered to be the completion of a call to any of the
insert, remove, or contains functions. The results for tests in high contention,
medium contention, and low contention testing environments are shown in Fig. 4.4,
Fig. 4.5, and Fig. 4.6 respectively.

Fig. 4.4 and 4.5 shows the benefits of structures that lazily raise their reference
towers with background threads. Such structures perform particularly well under
high contention environments. In particular, the lazy layered skip graph performs
well in high and medium contention environments as it replicates the effect of lazily
raising reference towers. As was anticipated in Sec. 2.1, using a NUMA-aware data

1Note that only count the time it takes for threads to perform operations is counted so as not
to confound background operations with true performance, but as much parallelism as possible is
desirable so as to emulate real contention scenarios as frequently as possible.

40 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

partitioning scheme gives the structure a massive boost in performance over its
competitors in NUMA. Furthermore, it is anticipated that shared nodes are found
particularly fast in smaller key space testing environments in that more nodes will
be found immediately in the thread-local hash table used to index shared nodes
from the layered interface.

Notice that Fig. 4.1 just shows the layering technique on top of the skip graph,
sparse skip graph, and the skip list. Note that the skip graph and the sparse skip
graph both apply the partitioning scheme whereas the skip list does not. Otherwise,
the structures use the exact same layering technique, the exact same thread-local
data structures, and are run through the exact same testing protocols on the exact
same machine. The only difference is the application of the partitioning scheme.
Also note that our thread pinning strategy will pin threads to CPUs within the same
node in NUMA as long as possible. The effects of threads being pinned to separate
NUMA nodes can first be seen at 64 threads. The partitioning scheme applied to
the skip graph and sparse skip graph allow for the performance to continue to scale
where the skip list does not. Herein lies demonstable proof of the benefits of the
partitioning scheme.

2 4 8 16 32 64 96
threads

0

20000

40000

60000

80000

100000

120000
Operations per Millisecond

layered_map_sl
layered_map_sg
layered_map_ssg

Figure 4.1: Medium-Contention, Write-Heavy Workload. 32% effective updates.

Fig. 4.2 shows two structures, the skip graph and the layered skip graph, to
show the effect of layering. As was demonstrated above, these two tests are identical
except for the variable of layering thread local-data structures on top of the skip
graph or not. This technique demonstrates demonstrable benefits irrespective of
NUMA. That is, the layered skip graph significantly out performs the skip graph
as early as 2 threads. However, also note that the impact of introducing NUMA
does not impact the layered skip graph as much as it does the skip graph. That is
because the thread-local data structures are also stored in the memory associated
with each thread’s CPU in NUMA in the layered structure, whereas the skip graph
does not benefit from such locality.

Note that, in Fig. 4.3, the layering technique on top of a linked list equals

Section 4.3 41

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

20000

40000

60000

80000

100000

Operations per Millisecond

layered_map_sg
skip_graph

Figure 4.2: Medium-Contention, Write-Heavy Workload. 32% effective updates.

the performance or outperforms layering on a skip graph under high contention.
This further reinforces the well-established idea that the overhead of maintaining
the skip graph semantics through upper-level index layers outweighs the benefits
of NUMA-awareness and overall throughput. Yet, such a technique does not scale
well into lower contention environments. This shows that concurrent structures that
are optimized for one environment are antithetical to structures optimized for other
environments. Furthermore, by being aware of the benefits from this technique in the
implementation proposed by this thesis, the larger ideas of laziness can used without
the components of design that will cause unnecessary overhead or slow-down. It is
this practice that allows us to build such a structure that is still NUMA-aware.
It is also why the lazy application of the technique scales better than other lazy
concurrent structures in low-contention.

The Rotating Skip List is the best performing competing data structure in the
high contention testing environment. NUMASK and the No Hotspot skip list both
scale particularly well. This is attributed to the effective utilization of the caching
architecture and contention-free maintenance of the structure upon rotation. Other
structures that utilize background threading to maintain the structure, like NU-
MASK and No Hotspot, also scale well under the high contention testing environ-
ment.

In low-contention environments, the layered skip graph list is the best performing
non-blocking structure. By providing skip list nodal semantics, the overhead of a
NUMA-aware data partitioning scheme can be significantly decreased. Furthermore,
the benefit obtained by using the layered skip graph over a traditional skip list
structure demonstrates the throughput performance benefit of using a NUMA-aware
structure over an unaware structure.

The lock-based skip list performs well in low-contention environment since there
will be a very low probability that there will be contention for a lock, and so the
performing of many operations within a lock reduces the number of synchronized

42 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

25000

50000

75000

100000

125000

150000

175000

200000
Operations per Millisecond

layered_map_sg
layered_map_ssg
layered_map_ll
lazy_layered_map_sg

Figure 4.3: High-Contention, Write-Heavy Workload. 32% effective updates.

variables to which writing must be performed. This is seen in practice in Fig. 4.6.
These results are accepted, but they are not particularly interesting from a research
perspective due to the incredibly poor performance lock-based structures demon-
strate under high-contention.

4.4 Locality

In measuring thread locality, an additional attribute is placed on each node called
“owning thread.” From here, a counting metric is included for each node operation
and map each operation from the thread currently operating on that node to the
thread to which it belongs. This is done because inserted nodes will be in the
memory associated with that thread’s particular NUMA node.

The aim of measuring where threads access memory is to show that the parti-
tioning scheme implemented in the skip graph and skip graph variants demonstrates
strong NUMA locality. The locality heavily contributes to the performance benefits.
In the research leading to this thesis, it was hypothesized that the NUMA-aware
partitioning scheme will introduce a highly predictable memory-access pattern. For
the machinery that was used in the research leading to this thesis, such a pattern is
optimal. However, seeing as most of the skip graph configuration is done at compile
time, the controls that implement NUMA-awareness can be easily tuned for any
hardware NUMA layout, and the general patterns will remain in tact.

It is important to note that the raw numbers do not reflect true outcomes in
running the tests without the STATS compiler instruction flags, as additional over-
head is introduced. However, they do provide an intuitive grasp as to the scale at
which the operations are performed.

Section 4.4 43

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

25000

50000

75000

100000

125000

150000

175000

200000
Operations per Millisecond

nohotspot
numask
rotating
lazy_layered_map_sg
locked_skip_list
skip_graph
skip_list
layered_map_ll
layered_map_sg
layered_map_ssg
layered_map_sl

Figure 4.4: High-Contention, Write-Heavy Workload. 32% effective updates.

2 4 8 16 32 64 96
threads

0

25000

50000

75000

100000

125000

150000

175000

Operations per Millisecond

nohotspot
numask
rotating
lazy_layered_map_sg
locked_skip_list
skip_graph
skip_list
layered_map_ll
layered_map_sg
layered_map_ssg
layered_map_sl

Figure 4.5: Medium-Contention, Write-Heavy Workload. 32% effective updates.

44 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

50000

100000

150000

200000

250000

Operations per Millisecond

nohotspot
numask
rotating
lazy_layered_map_sg
locked_skip_list
skip_graph
skip_list
layered_map_ll
layered_map_sg
layered_map_ssg
layered_map_sl

Figure 4.6: Low-Contention, Write-Heavy Workload. 32% effective updates.

1 13 25 37 49 61 73 85
accessed from thread #

1

13

25

37

49

61

73

85

th
re

ad
 id

NUMA Distance Locality

0.00110

0.00111

0.00112

0.00113

0.00114

0.00115

0.00116

Figure 4.7: Skip List CAS memory access heatmap.

Section 4.4 45

Layering and Data Partitioning Techniques for Concurrent Data Structures

1 13 25 37 49 61 73 85
accessed from thread #

1

13

25

37

49

61

73

85

th
re

ad
 id

NUMA Distance Locality

0.005

0.010

0.015

0.020

0.025

Figure 4.8: Skip Graph CAS memory access heatmap.

1 13 25 37 49 61 73 85
accessed from thread #

1

13

25

37

49

61

73

85

th
re

ad
 id

NUMA Distance Locality

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Figure 4.9: Skip Graph List CAS memory access heatmap.

46 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

1 13 25 37 49 61 73 85
accessed from thread #

1

13

25

37

49

61

73

85

th
re

ad
 id

NUMA Distance Locality

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Figure 4.10: Lazy Skip Graph CAS memory access heatmap.

Skip List Locality
Seeing as most competing data structures are made of a skip list variant without
the NUMA-aware partitioning scheme, the research leading to this thesis began by
examining the locality features of a skip list. It can be easily seen that, in Fig. 4.7,
a skip list has a totally random access pattern.

Un-stacked skip lists searches start from the head node in all situations. Further-
more, the search makes a traversal to the minimum node at the top level, regardless
of where that node is in memory. As was discussed in Section 4.3, this works really
well in a large element space (low contention environment) as this node will likely
help make for a very fast search, as significantly more nodes are traversed at the
upper level which allows for the skipping of more nodes.

However, skip lists perform particularly poorly in a small element space (high
contention environment). When writing to a node has a high probability of failure,
traversing nodes will become increasingly costly. The number of nodes searched will
remain low in each call to the search operation, but more nodes will be traversed
per overall operation. Furthermore, writing to these nodes will become increasingly
more difficult, and failing at expensive operations is incredibly costly to the overall
performance of the structure.

Skip Graph Locality
In examining the locality trends of the skip graph, contrary to the skip list, the
access pattern is highly predictable. Threads operate in a logarithmic pattern of
accessing certain regions in the skip graph structure. In each of the three skip graph
variants tested, this pattern of accessing nodes takes place. That is, the majority of
node accesses exist along the diagonal of the graph, demonstrating that most nodes

Section 4.4 47

Layering and Data Partitioning Techniques for Concurrent Data Structures

are accessed by the thread itself.
These accesses to nodes that each particular thread has inserted largely comes

from the properties of the layered the structure, so the first node traversed in the skip
graph will belong to that thread because it was inserted by that thread and accessed
by its local structure. This will inflate the value along the diagonal. However, note
also that there will only be one other thread contending for nodes in the upper-
most level of the structure. As such, the most accessed nodes belong to the thread
itself and the other thread with which share the upper-most level. At the next
level down, threads share the list with two more threads and those are the next
most intensive accesses. This pattern continues throughout the structure and exists
entirely because of the NUMA-aware partitioning scheme.

This also reinforces the idea that, regardless of the introduction of more bottom-
level contention, upper-level contention will remain constant in a skip graph no
matter how many threads are operating in the overall environment. Skip list in-
sertions will face the same contention when inserting a node into the upper-most
level as it will in the bottom level. In a high element space, the consequences of
this effect will seldom be seen. However, by partitioning the data strategically, con-
tention is lower at the upper levels, which means that those CAS operations should
be successful more often than in the skip list. This phenomenon, coupled with the
increased NUMA locality gained from the partitioning scheme, are all structural rea-
sons for the performance benefit of skip graph-based structures over skip list-based
structures.

It is important to note that Fig. 4.8 shows that the layered skip graph has the
largest scale of CAS operations. This comes from the fact that skip graphs are very
dense structures. As was discussed in Section 1.5, all skip graph nodes exist at the
upper-most level thereby demanding that all nodes have CAS operations at each
level upon insertion. This problem is mitigated by deploying the skip graph list, as
the scales in Fig. 4.9 and Fig. 4.7 are approximately the same.

4.5 Thread Pinning
Recall that running experimentation with thread pinning makes sense for NUMA.
It can be argued that this will artificially inflate the results, seeing as system calls
will be made in the application of such a data structure to a programmers applica-
tion. However, the random assignment of threads to different regions of a NUMA
architecture would merely cause thread memory to exist in several different NUMA
regions2. As such, experiments are run with the understanding that such results
may not occur in an application of the data structure rather than in one specifically
for testing high-performance computing. Note that the artificial inflation of perfor-
mance resulting from the lack of system calls will not impact any one structure more
or less than any other structure in the experimentation.

Several different thread pinning strategies are tested. In doing so, the most
effective way to access memory from a hardware perspective can be determined.
There are five different pinning strategies employed from the cat.py file that are
described in Section 2.1. They are shown in Fig. 4.11.

2This problem is further mitigated by pre-allocating per-thread memory that corresponds to
their running position in the NUMA architecture.

48 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

20000

40000

60000

80000

100000

Operations per Millisecond

layered_map_sg
layered_map_sg
layered_map_sg
layered_map_sg
layered_map_sg

Figure 4.11: Performance of different thread pinning strategies.

Each pinning strategy is run on the stacked map skip graph list structure to
demonstrate their effect. Pinning threads into the same hyperthreaded core has the
best effects on the performance of the stacked map skip graph list. The performance
benefits are marginal but will make an impact on the overall performance of the
structure.

4.6 Nodes Per Search
The research leading to this thesis looked to measure the number of shared nodes
that each structure traverses. In so doing, the effects of additional levels of a skip list
or skip graph in addition to the runtime effect of layering are demonstrated. As has
been shown in Section 1.3, it is anticipated that the number of nodes traversed in a
perfect skip list to be O(log(n)). Seeing as the maximum level of a skip list or skip
graph is fixed at the beginning of the runtime, this effect is closely approximated
with an arbitrary element space.

Seeing as the maximum level of the skip graph must be kept low so as to avoid
large overhead and segmentation faults due to memory overruns because of the
structure’s density, the structure is layered with local structures to approximate
the effect of the upper levels of the skip list. In so doing, the number of shared
nodes traversed in the skip graph and skip list follow the same overall curve without
raw values. This is true as a result of more nodes needing to be traversed at the
uppermost level in the skip graph because its uppermost level is lower than the
skip list. The effect of layering the structure decreases the overall number of shared
nodes traversed. This comes from the fact that the local structure gives each thread
a unique starting position close to the node for which it is looking.

The benefit of this effect is two-fold. For one, this minimizes the number of
shared node-traversals that are to be made. Following pointers to random locations

Section 4.6 49

Layering and Data Partitioning Techniques for Concurrent Data Structures

2 4 8 16 32 64 96
threads

0

5

10

15

20

25

Nodes per Search

lazy_layered_map_sg
locked_skip_list
skip_graph
skip_list
layered_map_ll
layered_map_sg
layered_map_ssg
layered_map_sl

Figure 4.12: Nodes per search for several structures.

in memory can be particularly expensive in cross-NUMA socket settings. Further-
more, this demonstrates that the contention for the head element will be minimized
as many threads will start their operations from a dispersed location within the
structure itself.

Notice that the number of shared nodes traversed increases in layered structures.
As more threads are introduced, fewer nodes will be in each thread’s local structure.
This means that the starting locations in the shared structure will not necessarily
be as close to the final location in a search, especially if local structures are not
balanced3. However, the limit of such pattern as the number of theads approaches
infinity will only ever be the non-layered version of that structure. Never will a
thread need to traverse more nodes than it would from starting from the beginning.

4.7 Memory Reclamation
In several concurrent data structures, reesearchers often make the decision between
writing in Java or C++. By choosing Java, memory is freed automatically by the
language processor through built-in garbage collection. In choosing C++ on the
other hand, researchers can more directly control the memory in which threads op-
erate. As has been discussed, the partitioning scheme employed in skip graph-based
structures benefit from NUMA-awareness when memory is strategically partitioned.
This can be most effectively done in C++, but it means that a system of memory
reclamation must be implemented.

Memory management in concurrent environments can be extraordinarily diffi-
cult to maintain. In fact, it took almost an entire calendar year (from Summer 2019
up until our final tests being run in April 2020) to build a bug-free system of node

3This problem is addressed in Ana Hayne’s ’20 Honors Thesis

50 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

reclamation. Data structures built using the techniques proposed in this thesis per-
fectly free all memory that they allocates through their own Allocator.hpp library.
The library works by maintaining a system of reference counting. It implements a
means of lock-free reference counting, similar to the ideas first introduced in [9].
Reference counting mechanism, like that of [9], mean including a counter represent-
ing the number of pointers pointing to an object. In the event that such counter is
greater than zero, the object in question cannot be freed as it is still accessible. As
such, a piece of memory is deemed freeable when its reference count is zero.

This required the building of a concurrent skip graph-specific form of memory
reclamation as opposed to applying a skip list-variant adaptable memory reclaimer.
However, it also means that memory will be freed at a less frequent rate as refer-
ence counts are increased without any thread pointing directly to that reference.
References are increased as soon as they are discoverable and only decreased when
they are unlinked. As such, a much stricter protocol of reference counting than
Threadscan is employed.

The protocol works by setting the number of possible “references,” or means by
which a node can be accessed, to the maximum number of levels by which a node can
be accessed. This includes an additional reference for the local structure. When a
node is unlinked from the structure at a particular level, that node’s reference count
is decreased as it is no longer accessible at that level. When the reference count
reaches 0, the thread puts the node in a predefined queue to free several nodes in
batch. This is done to ammortize the cost of freeing nodes in a particular operation
and to reduce the contention for the resources of the operating system, but nodes
are logically freed at the point at which they are placed in the queue.

Not all nodes will be freed from this process alone. Nodes may still be left in
these queues upon terminating their thread function in the event that the reclama-
tion threshold is not hit upon termination and nodes may still be in the structure
without being physically removed. As such, two further operations are performed
to perfectly free all memory that is allocated. In particular, the launching thread
frees all memory remaining in the queues and makes a call to cleanup the data
structure. This operation entails a physical removal of all nodes remaining in the
data structure.

Existing memory management libraries, such as Threadscan[2], make assump-
tions about concurrent data structures that do not necessarily hold in all testing
environments. In particular, Threadscan assumes that nodes can only be found at
the node’s upper-most level. Such an assumption is safe when operating in a skip
list, as nodes are found through a search at the highest possible level by traversing
as far forwards as possible before moving down a level, as was discussed in Sec. 1.3.
However, in a skip graph, nodes are found at the highest possible skip list in which a
thread is operating. Recall, however, that nodes exist in all skip lists in the bottom-
most level of the skip graph. As such, it is possible that the node exists at a higher
level in a different skip list than the one being operated on by the current thread.

This problem is demonstrated using Fig. 4.13 as a reference. Suppose a thread is
operating in the skip list made up of “00”, “0”, “λ.” When making a searchRelink
call for the node 56, the predecessors array would be [31,31,31]. Notice that 48
would be unlinked at levels 1 and λ. The successors array would be [tail,88,79],
with 62 being unlinked at all levels. After this call is made, 48 has been fully
unlinked only from the skip list “00”, “0”, “λ.” It has not been unlinked from

Section 4.7 51

Layering and Data Partitioning Techniques for Concurrent Data Structures

Figure 4.13: In this skip graph image, suppose that 48 has been logically removed
and that 62 has been fully unlinked and freed from the structure.

the structure as a whole. If a thread operating on skip list “10”, “0”, “λ” were to
traverse the upper-most level for 88, then it still accesses 48. As such, this breaks
the invariant that a node is discoverable at its upper-most level, but instead at the
upper-most level of the skip list in which a thread is currently operating.

The reference counting mechanism in Threadscan relies on the invariant that
unlinking a node occurs from the node’s uppermost level downwards. However,
skip graph’s preserve the invariant that threads do not have access to every node
at its maximum height, which breaks the tacit assumption made by Threadscan.
As such, the reference count of each node must increase at each place where it can
be potentially found. In particular, this refers to the local structure of the node as
well as the shared levels of the node, so the reference count of a node that has been
inserted to 3 shared levels and the thread’s local structure should have a reference
count of 4.

It is also worth noting that this system of allocation perfectly reclaims all memory
that it allocates over the course of its runtime. That is, no nodes are lost during
the operations in either the lazy or non-lazy versions of the structure. This is
demonstrated by counting exactly how many nodes are allocated which is done by
counting the number of successful insertions and having a “delete” call to match
each insertion. For lazy operations, however, only the insertions that truly allocated
a node as opposed to insertions that merely flipped the flag from true to false should
be counted. All other insertions are removed from the count.

This method has been tested in two ways. The first was by running the test
that all inserted nodes had a matching free call in 30 iterations of tests in the lazy
layered skip graph, the layered sparse skip graph, and the layered skip graph. The
log of this test showed that no node was ever left un-freed throughout each of the
30 iterations.

4.8 Priority Queue
Recall that this thesis proposes an alternative means of developing the Spray List
algorithm [1] particularly made for skip graphs in Sec. 2.3. In particular, this thesis
looks to show that utilizing skip graphs for the development of priority queues en-
sures that threads (1) remove nodes that are closer to the absolute minimum element
of the structure than in skip lists and (2) perform scalable remove operations. Ex-
perimentally, utilizing such an implementation gives scalable performance benefits

52 Chapter 4

Layering and Data Partitioning Techniques for Concurrent Data Structures

by seven times as is demonstrated in Fig. 4.14. Experimentally, this is demonstrated
by showing that this solution is scalable for 96 threads.

2 4 8 16 32 64 96
threads

0

5000

10000

15000

20000

25000

30000

35000

Operations per Millisecond

skip_list
sg_spray_layered_map_sg
spray_layered_map_sg

Figure 4.14: Performance in operations per millisecond. Medium Contention, 50%
insertion, 50% removal.

Notice that there are two variants of the skip graph implementation of the Spray
List - SG Spray or traditional Spray. SG Spray refers to the proposed algorithm
that attempts to mark nodes along the way, as opposed to being sprayed to the final
destination. As anticipated, this approach is slower than the process of a thrad being
sprayed to a node and trying to remove the node it was assigned. Namely, contention
for each node increases because threads are performing more CAS operations (which
are expensive to do) and removing nodes that are much closer to the true absolute
minimum element.

With that said, the SG Spray algorithms still show scalable performance at least
as good or, in the normal case, better than the Spray List algorithm applied to skip
lists. This while removing nodes closer to the true absolute minimum element of
the structure.

Experimentally, nodes are removed much earlier in the structure, which is visible
by looking at the key distribution in Fig. 4.15. This test was performed by preloading
the entire element space with a node at each key and “turning off” true removals of
the node. That is, instead of threads attempting to mark nodes, they will merely
report the index to which they were sprayed. This method of testing, introduced
by [1], gives an intuition of where threads are being sprayed to support the bounds
proof provided in Sec. 2.3. As can be seen, the key distribution from the SG Spray
is frequently much closer to the true absolute minimum than the traditional Spray
List algorithm.

Section 4.8 53

Layering and Data Partitioning Techniques for Concurrent Data Structures

0 500 1000 1500 2000

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

Figure 4.15: Key distribution for SG Spray PQ algorithm on a skip graph.

0 500 1000 1500 2000

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

2.00%

Figure 4.16: Key distribution for Spray PQ algorithm on a skip graph.

54 Chapter 4

Chapter 5

Potential Future Work

Throughout this process, I have been amazed at all of the opportunities these tech-
niques have provided for future research. There are many components that elicit
further study and there is a lot of untapped potential to provide increased perfor-
mance in all testing configurations.

5.1 Background Threading
Recall several of the other state-of-the-art concurrent data structures task a “back-
ground thread” with performing several update operations in the structure to mini-
mize contention in hotspot areas. This was never explored the possibility of such a
consideration in the structure, which could be particularly useful in high-contention
testing environments where laziness is not necessarily present.

Work relating to background threading is being pursued by Ana Hayne (Davidson
College ‘20) for her Honors Thesis, which builds upon the framework of the Layered
Data Structures. In so doing, a system of load balancing the thread-local data
structures will be performed by a background thread. This will imply a more even
distribution of data across local structures and, consequently, local structure search
time will be more uniform and shared structure starting positions will be consistently
close. Load balancing is a commonly implemented technique in distributed systems
and will be beneficial to the structure as a whole.

Background threading poses the opportunity to create a structure that performs
with both minimal hotspot contention in high-contention environments and can
continue to output high performance rates under low-contention environments. In
particular, it would be interesting to see to what degree a key space can continue
to grow before the task of a background thread becomes too large and the task will
bottleneck. As such, the prospects of pursuing background threading research within
the framework and heuristics of a stacked skip graph or variant seem promising.

A difficulty of pursuing such a solution is that it will artificially inflate the re-
sults of low-thread count performances. In the event that all hardware CPUs are
not actively being used by threads running on the testing environment, addition-
ally parallelism is being introduced that will inflate the overall performance of the
structure. In this sense, considerations must be made to see if it makes more sense
to consider the “background threads” as an active thread delegated with a singular
task and to consider the work-rate as such. This changes the meaning of the metric
and perhaps suggests that certain threads be constantly tasked with different roles,

55

Layering and Data Partitioning Techniques for Concurrent Data Structures

none of which would create contention hotspots with the other.

5.2 Transactional Memory
On several occasions, this research considered the possibility of providing a speed-
up to the structure by employing TM into the structure. As has been stated in
Sec. 1.1, Transactional Memory (TM) ensures that several operations can be done
within a singular synchronized block and provides an all-or-nothing result. This
is both optimistic in nature and, given the results of the lock-based skip list un-
der low contention environments, should provide some form of speed up in similar
environments.

In the research leading to this thesis, a structure similar to that of the skip graph
and its variants was built that is TM-based as opposed to CAS-based. However,
instead of using conventional lock-based fallback code, the TM structure falls back on
the CAS architecture designed in the traditional implementation of the layered skip
graph and its variants. As such, TM allows for several operations to be achieved at
once, like the linking together of a node into the structure or the marking of several
levels of a node at once.

This research has most recently been pursued by Altan Tutar (Davidson College
‘20) as part of a research grant during the summer of 2019. His work found that TM
was more beneficial in removal operations than insertions. The overall perfomance of
a TM-based layered skip graph matched that of a CAS-based approach. However,
TM had a very high success rate, so similar results can be achieved in two very
different ways. This suggested that the well established algorithms written for skip
lists are highly optimized and that changing the synchronization mechanism alone
will not give increased performance.

One area of future work that is intriguing is using TM to detect contention. The
benefit of using TM is that it can return a particular flag as part of its aborting
upon failure. As such, this flag could be used to indicate that a particular area of
the structure is hot with contention. Unfortunately, implementing such a structure
with such clues is difficult in practice. Furthermore, the skip list algorithms are
well enough established that it is non-trivial to see exactly how such knowledge
will be positively influential on pragmatic aspects of the algorithm itself. However,
once again, the potential for structural speed-up in this area of research seems
promising.

56 Chapter 5

Chapter 6

Conclusion

The NUMA-aware, non-blocking layered concurrent skip graph and its variants pro-
vide several opportunities for algorithmic speed-up as compared to other state-of-
the-art architectures and algorithms. The techniques from several optimized skip
graphs for differing levels of contention are used and they are applied to the in-
frastructure to partition data for NUMA so as to reduce the number of cross-socket
traversals made. This will be increasingly important as modern multi-core machines
are increasingly designed with this memory hierarchy. Additionally, the structure is
highly adaptable so as to be easily converted to any potential future developments
in the hierarchical organization of memory.

57

Appendix A

General Commentary

Testing Procedures

Reviewers from conference submissions before synchrobench was included as a stan-
dard consistently asked that the paper run tests with synchrobench. It makes sense,
from a reviewers perpsective, to have a consistent benchmark for which all state-of-
the-art concurrent maps can be tested to eliminate testing bias. However, there are
certain parts of synchrobench that will inherently help certain data structures over
another.

In particular, the fact that the synchrobench protocol will alternate by default
in the construction of the local data structure is utilized. Alternate means that an
update call to remove a node will try and remove the value of the most previously
inserted node by that thread. As a result, there is a fast hash table implemented as
part of the local data structure in the lazy layered data structure. This is done to
demonstrate that the techniques are highly adaptable to the particular testing envi-
ronment. However, this also demonstrates some of the faults of the synchrobench
testing standards.

As has been suggested, the original submission was not submitted using the
synchrobench testing standard. Instead, the testing script would pick random keys
for all insertion and removal calls, which effectively emulated the effect of a non-
altering testing configuration. However, the paper had originally lacked a metric to
demonstrate effective update operations. That is, insertions or removals that return
true. Doing so measures the effect of the update operations themselves as opposed
to those operations that return false, which are effectively just a search operation.

All of this to say, synchrobench provides several important contributions;
namely, it is a consistent testing framework, a well-thought out protocol, and a tool
for researches to avoid necessarily implementing their own testing script. However, it
is also important to recognize that merely utilizing synchrobench does not perfectly
eliminate all testing bias. Instead, I believe an ideal testing standard would be one
in which several different fair testing protocols are tested to demonstrate the effect
of different protocols under different requirements. Ideally, a high-performance data
structure is one that is malleably scalable in all testing environments.

58

Layering and Data Partitioning Techniques for Concurrent Data Structures

Memory Reclamation
It is no secret that memory reclamation is an important part of data structure
design. Furthermore, it is generally understood that calls to delete or free are
expensive system calls that will slow down testing in a concurrent data structure. It
is for this reason that the reclamation protocol and other protocols like Threadscan
operate lazily on undiscoverable batches of nodes.

I wanted to use this section of this thesis to reiterate the importance of ensuring
that all memory can be freed if a structure advertises that memory is perfectly
reclaimable. A structure’s inability to perform such memory reclamation is not
in any way productive for the academic field, even at the expense of performing
optimally.

In this research experience, the work has involved several state-of-the-art concur-
rent data structures. It has not always been plainly apparent as to what protocol is
being used so as to reclaim memory in all data structures, even when it is expressly
advertised in a journal publication. Such procedures do not always fully appear
as advertised in the implementation of the structure, and the use of background
threads render tools like valgrind effectively useless with its additional overhead.

The consequences of implementing, publishing, and advertising a data structure
are not severe. The paper will not be retroactively removed from a conference pro-
ceeding, nor will other any other consequences land. As such, it is up to researchers
to self-impose and uphold the standards for which are set for implementing a high-
performance concurrent data structure. The research area as a whole will lose its
integrity and developing new techniques or further developing existing techniques
will render meaningless.

In my opinion, advertising full memory-reclamation capabilities should be an
element of correctness in the structure. Furthermore, the extent to which memory-
reclamation is used in the structure should be fully transparent. In the event that
it is not, fair comparisons between structures are impossible.

For full disclosure, all metrics from all tests are without memory reclamation
enabled. These decisions were made so as to ensure that the structures are tested
fairly as compared to all other structures to which the tests compare.

Section A.0 59

Appendix B

Additional Algorithms

Algorithm 9 Skip Graph - searchRelink
1: procedure searchRelink(key, predecessors, successors)
2: current = head of current thread’s skip list
3: ▷ Note that this is a call to getStart when layered
4: for each level from greatest to least do
5: while true do
6: next = current.next
7: while next node is marked do
8: next_next = first unmarked node after next
9: next = next_next

10: if previous.next is not current then
11: current = previous.next
12: if previous is marked then
13: goto line 2
14: next = current.next
15: continue
16: if CAS on previous.next from current to next is false then
17: current = previous.next
18: if previous is marked then
19: goto line 2
20: next = current.next
21: continue
22: if current.key >= key then
23: break
24: previous = current
25: current = next
26: predecessors[level] = previous
27: successors[level] = current
28: return successors[0].key is key and successors[0] is unmarked

60

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 10 Skip Graph - Insert
1: procedure Insert(key)
2: while true do
3: if searchRelink(key, predecessors, successors) then
4: return false
5: if toInsert == nullptr then
6: toInsert = Node(key)
7: toInsert.next[0] = successors[0]
8: if CAS on predecessors[0].next from successors[0] to toInsert is false

then
9: continue

10: for each level from 1 to topLevel do
11: while true do
12: repeat
13: oldSuccessor = toInsert.next[level]
14: if toInsert is marked then
15: return true
16: until CAS on toInsert.next[level] from oldSuccessor to succes-

sors[level] is true
17: if CAS on predecessors[level] from successors[level] to toInsert is

false then
18: toInsert.next[level] = null
19: return true
20: else
21: break
22: return true

Algorithm 11 Skip Graph - Remove
1: procedure Remove(key)
2: if !searchRelink(key, predecessors, successors) then
3: return false
4: toRemove = successors[0]
5: for each level from topLevel to 1 do
6: while toRemove is unmarked do
7: CAS on toRemove.mark[level] from false to true
8: while toRemove is unmarked at the bottom level do
9: if CAS on toRemove.mark[0] from false to true then

10: for each level from 0 to topLevel do
11: next = toRemove.next[level]
12: if CAS on predecessors[level] from toRemove to next is false then
13: break
14: return true
15: return false

Section B.0 61

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 13 searchNoRelink
1: procedure Contains(key)
2: return searchNoRelink(key)
3: procedure searchNoRelink(key)
4: current = head of current thread’s skip list
5: ▷ Note that this is a call to getStart when layered
6: for each level from top to bottom do
7: while current.key < key do
8: previous = current
9: current = previous.next

10: while current is marked do
11: current = current.next
12: if current.key is key and current is unmarked then
13: return true
14: return false

Algorithm 14 Non-Lazy Layered Interface - Insert
1: procedure Insert(key)
2: if shared_structure.insert(key) is true then
3: if shared node is unmarked then
4: local_structure.emplace(key)
5: return true
6: return false

Algorithm 15 Non-Lazy Layered Interface - Remove
1: procedure Remove(key)
2: return shared_structure.remove(key)

Algorithm 16 Non-Lazy Layered Interface - Contains
1: procedure Contains(key)
2: return shared_structure.contains(key)

Algorithm 17 Non-Lazy Layered Interface - GetStart
1: procedure GetStart(key)
2: result = successor to key in local_structure
3: while result is not null do
4: if result is not marked in shared structure then
5: return result
6: else
7: local_structure.erase(result)
8: result = previous node in local_structure
9: return result

62 Chapter B

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 18 Non-Lazy Layered Interface - UpdateStart
1: procedure UpdateStart(current)
2: ▷ Current is a node in the local structure
3: while current is not null do
4: if current is not marked in shared structure then
5: return current
6: else
7: local_structure.erase(current)
8: current = previous node in local_structure
9: return current

Algorithm 19 Lazy Layered Interface - Insert
1: procedure Insert(key)
2: if key is in local_hashtable then
3: while true do
4: if shared node is unmarked and shared node is unflagged then
5: return false
6: if shared node flag is flipped to inserted is true then
7: return true
8: else
9: local_structure.erase(key)

10: local_hashtable.erase(key)
11: break
12: else
13: if shared_structure.lazy_insert(key) is true then
14: if shared node is unmarked then
15: local_structure.emplace(key)
16: return true
17: return false

Algorithm 20 Lazy Layered Interface - Remove
1: procedure Remove(key)
2: if key is in local_hashtable then
3: while true do
4: if shared node is unmarked then
5: if shared node is flagged then
6: return false
7: if shared node flag is flipped to removed is true then
8: return true
9: else

10: local_structure.erase(key)
11: local_hashtable.erase(key)
12: break
13: return shared_structure.lazy_remove(key)

Section B.0 63

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 21 Lazy Layered Interface - Contains
1: if key is in local_hashtable then
2: return shared_node is unmarked and shared_node is unflagged

return shared_structure.contains(key)

Algorithm 22 Lazy Layered Interface - getStart
1: procedure GetStart(key)
2: result = successor to key in local_structure
3: while result is not null do
4: if result is not marked in shared structure then
5: shared_structure.finish_insert(key)
6: return result
7: else
8: local_structure.erase(result)
9: local_hashtable.erase(result)

10: result = previous node in local_structure
11: return result

Algorithm 23 Lazy Layered Interface - updateStart
1: procedure UpdateStart(current)
2: ▷ Current is a node in the local structure
3: while current is not null do
4: if current is fully linked in the shared structure and current is not

marked in shared structure then
5: return current
6: else
7: local_structure.erase(current)
8: local_hashtable.erase(current)
9: current = previous node in local_structure

10: return current

Algorithm 24 Lazy Skip Graph - searchNoRelink2
1: procedure searchNoRelink(key)
2: current = head of current thread’s skip list
3: ▷ Note that this is a call to getStart when layered
4: for each level from top to bottom do
5: while current.key < key do
6: previous = current
7: current = previous.next
8: while current is marked or (current is flagged and enough time has

elapsed since current was inserted and CAS on current’s mark from false to
true) do

9: current = current.next
10: if current.key is key and current is unmarked then
11: return true
12: return false

64 Chapter B

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 25 Lazy Skip Graph - Lazy Insert
1: procedure LazyInsert(key)
2: while true do
3: if searchNoRelink2(key, predecessors, successors) then
4: return false
5: if toInsert == nullptr then
6: toInsert = Node(key)
7: toInsert.next[0] = successors[0]
8: if CAS on predecessors[0].next from successors[0] to toInsert is false

then
9: continue

10: return true

Algorithm 26 Lazy Skip Graph - Finish Insert
1: procedure FinishInsert(key)
2: if searchNoRelink2(key, predecessors, successors) then
3: for each level from 1 to topLevel do
4: while true do
5: repeat
6: oldSuccessor = toInsert.next[level]
7: if toInsert is marked then
8: return flase
9: until CAS on toInsert.next[level] from oldSuccessor to succes-

sors[level] is true
10: if CAS on predecessors[level] from successors[level] to toInsert is

false then
11: toInsert.next[level] = null
12: return false
13: else
14: break
15: return true
16: return false

Section B.0 65

Layering and Data Partitioning Techniques for Concurrent Data Structures

Algorithm 27 Lazy Skip Graph - Remove
1: procedure Remove(key)
2: current = head of current thread’s skip list
3: ▷ Note that this is a call to getStart when layered
4: while true do
5: if searchNoRelink(current) is false then
6: return false
7: while true do
8: if current is unmarked then
9: if additional flag is set to removed then

10: return false
11: else
12: if CAS on additional flag from inserted to removed is true

then
13: return true
14: else
15: break

66 Chapter B

Bibliography

[1] Dan Alistarh et al. “The spraylist: A scalable relaxed priority queue”. In: ACM
SIGPLAN Notices. Vol. 50. 8. ACM. 2015, pp. 11–20.

[2] Dan Alistarh et al. “Threadscan: Automatic and scalable memory reclama-
tion”. In: ACM Transactions on Parallel Computing (TOPC) 4.4 (2018), p. 18.

[3] Martin Ankerl. Robin Hood Hashing. https : / / github . com / martinus /
robin-hood-hashing. 2019.

[4] James Aspnes and Gauri Shah. “Skip graphs”. In: Acm transactions on algo-
rithms (talg) 3.4 (2007), p. 37.

[5] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. “The adaptive prior-
ity queue with elimination and combining”. In: International Symposium on
Distributed Computing. Springer. 2014, pp. 406–420.

[6] Irina Calciu et al. “NUMA-aware reader-writer locks”. In: Proceedings of the
18th ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming. 2013, pp. 157–166.

[7] Tyler Crain, Vincent Gramoli, and Michel Raynal. “No hot spot non-blocking
skip list”. In: 2013 IEEE 33rd International Conference on Distributed Com-
puting Systems. IEEE. 2013, pp. 196–205.

[8] Henry Daly et al. “NUMASK: high performance scalable skip list for NUMA”.
In: 32nd International Symposium on Distributed Computing (DISC 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[9] David L. Detlefs et al. “Lock-Free Reference Counting”. In: Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed Computing.
PODC ’01. Newport, Rhode Island, USA: Association for Computing Ma-
chinery, 2001, pp. 190–199. isbn: 1581133839. doi: 10.1145/383962.384016.
url: https://doi.org/10.1145/383962.384016.

[10] David Dice, Virendra J Marathe, and Nir Shavit. “Lock cohorting: a general
technique for designing NUMA locks”. In: ACM SIGPLAN Notices 47.8 (2012),
pp. 247–256.

[11] Ian Dick, Alan Fekete, and Vincent Gramoli. “A skip list for multicore”. In:
Concurrency and Computation: Practice and Experience 29.4 (2017), e3876.

[12] Vincent Gramoli. “More than you ever wanted to know about synchronization:
synchrobench, measuring the impact of the synchronization on concurrent al-
gorithms”. In: ACM SIGPLAN Notices. Vol. 50. 8. ACM. 2015, pp. 1–10.

[13] Danny Hendler et al. “Flat combining and the synchronization-parallelism
tradeoff”. In: Proceedings of the twenty-second annual ACM symposium on
Parallelism in algorithms and architectures. 2010, pp. 355–364.

67

Layering and Data Partitioning Techniques for Concurrent Data Structures

[14] Maurice Herlihy and Nir Shavit. “The art of multiprocessor programming”.
In: PODC. Vol. 6. 2006, pp. 1–2.

[15] Maurice Herlihy et al. “A provably correct scalable concurrent skip list”. In:
Conference On Principles of Distributed Systems (OPODIS). Citeseer. 2006.

[16] Jerry Zheng Li. “The SprayList: a scalable relaxed priority queue”. PhD thesis.
Massachusetts Institute of Technology, 2015.

[17] William Pugh. “Skip lists: a probabilistic alternative to balanced trees”. In:
Communications of the ACM 33.6 (1990).

[18] Nir N Shavit, Yosef Lev, and Maurice P Herlihy. Concurrent lock-free skiplist
with wait-free contains operator. US Patent 7,937,378. May 2011.

[19] Samuel Thomas et al. “Using Skip Graphs for Increased NUMA Locality”. In:
CoRR abs/1902.06891 (2020). arXiv: 1902.06891. url: http://arxiv.org/
abs/1902.06891.

68 Chapter B

