
Abstract of “Towards a Practical Secure Memory for Modern Deployment” by Samuel Thomas, Ph.D., Brown
University. Sunday 23rd March, 2025.

Processors rely on memory devices to store data that cannot does not fit in on-chip components, such as
registers and caches. In doing so, an implicit assumption is made that data that is loaded on chip from
memory is consistent with the state that was stored. This primitive is critical for security and privacy; user
data and program state alike are stored in memory, so its corruption can lead to dangerous behaviors such as
malicious execution or data leakage. Unfortunately, memory devices are subject to a variety of well known
attacks that allow for this corruption.

Given the potential vulnerability of memory devices, the study secure memory, which describes how
processor can reason about the storage of data in vulnerable memory devices, is of particular interest. Do-
ing so explicitly enforces the implicit assumptions by extending the memory controller logic to maintain
metadata associated with the data stored in memory. This is a valuable primitive as it allows processors to
reason about the privacy and integrity of stored data. With that said, such a protocol comes with several
limitations to its practicality: 1⃝ implementing secure memory comes at the cost of runtime performance; 2⃝
security metadata requires a significant space to store; and 3⃝ primitive definitions in secure memory limit
its adaptability to emerging memory technologies. As a result, more recent versions of secure processors
seldom implement a comprehensive secure memory protocol.

In order to make secure memory a more palatable feature for commodity secure hardware, it is necessary
to develop an in-depth understanding of the secure memory protocol. This dissertation first contributes a ro-
bust study of secure memory entailing a detailed qualitative and quantitative description of its mechanisms,
the translation of this theoretical protocol to practice, and the state-of-the-art optimizations to the protocol.
Doing so will classify the overheads of each of its components and highlight the impact of the various design
decisions that lead to the current secure memory landscape.

This dissertation will introduce four novel adaptations of the secure memory protocol: two of which
extend its baseline approach and two of which target its adaptability to emerging technologies. It will first
introduce Cordelia, a modification to the secure memory protocol that benefits runtime performance. This
protocol is robust to the trend of increasingly memory-intensive applications. Furthermore, it proposes the
Baobab Merkle Tree to alleviate the spatial overhead pressure imposed by secure memory metadata. Each of
these protocols leverage insights concerning runtime behaviors of the application and metadata to optimize
each of these ends. Afterwards, this dissertation explores the impact of two emerging memory technologies
on the secure memory protocol. It will first propose A Midsummer Night’s Tree, which describes an adapta-
tion of secure memory for non-volatile memories that explores the trade-off space imposed by these devices
in-depth. Then it will propose CAPULET and describe how emerging disaggregated memories can be lever-
aged to improve the existing optimizations to secure memory. From each of these ends, this dissertation will
formalize the problems that these emerging technologies impose on the practicality of secure memory.
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Preface

This thesis bridges the gap between the theoretical literature in secure memory with the problems towards
its practical realization and deployment. Ideally, secure memory is an established feature of any secure
hardware that is easily accessible to end-users. Unfortunately, secure memory is presently far from this
ideal. This thesis argues that the reason for this is a three-fold limitation of its theoretical conception: 1⃝
secure memory is performance limiting, particularly in terms of bandwidth consumed for metadata fetches;
2⃝ secure memory metadata is storage-intensive, especially if optimizations require even further metadata;
and 3⃝ secure memory does not abstract well to emerging memory technologies.

To begin to address these limitations, this dissertation first explores and profiles the design decisions
culminating in the first (since rescinded) commodity release of secure memory. In doing so, it provides
context of the potential benefit and room for optimization across various design directions. From here,
the thesis goes into several proposed secure memory architectures that address the argued limitations. In
particular, it proposes 1⃝ Cordelia to address its runtime performance and bandwidth overhead, 2⃝ the
Baobab Merkle Tree to address the metadata storage overhead of secure memory, 3⃝ A Midsummer Night’s
Tree to address the application of secure memory to non-volatile memories, and 4⃝ CAPULET to address
the application of secure memory to disaggregated memories.
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Chapter 1

Introduction

1.1 Motivation
For the for several decades, researchers have asked how a processor can safely execute a memory-dependent
program if the memory itself is untrusted [155, 167, 88, 87, 154, 243, 292, 231, 241, 291, 217, 75, 216, 74].
Suppose a processing element was unable to store all of a program’s data in the processor state (i.e., registers,
cache hierarchy, etc). Therefore, that data must be stored in a “remote” storage device (i.e., in a memory
device off of the processor chip). Seeing as the device is remote,it is natural to ask what can happen if the
device can be tampered or manipulated. What happens if an adversary can maliciously modify the contents
of data? Should the processor trust any data responses from the remote device? If memory should not be
trusted, then there is a need for secure memory.

At its core, this theoretical proposition is a function of fundamental implicit assumptions that characterize
the interaction of heterogeneous components in a computer’s architecture. A processor accesses a memory
device through a simple load/store interface. Whenever there is some data that must be stored externally,
the processor issues a “store” request to the memory device with the data and its address. When that data
is later needed by the program, the processor issues a “load” request to the memory device for the data
address. The simplicity of this interface allows for an elegant interaction between the processor and the
memory device, but it also limits the processor’s ability to reason about the state of the program’s data
while it was stored. That is, the processor assumes that the data’s state is safely maintained under all
circumstances. But is this assumption reasonable? Should a processor trust external devices to uphold these
assumptions? In the context of memory, this big question can be boiled down to two key properties about
the maintenance of stored data. While the data was stored, is its state private as the processor, application,
and developer expect? Furthermore, was the state of the data preserved while it was stored?

As it turns out, memory devices are subject to a broad set of physical vulnerabilities [298, 183, 170,
133, 166]. Among these vulnerabilities, an adversary can leak the contents of data in memory [298, 213] or
corrupt its contents [296, 185, 163, 114] through a variety of means (via physical tampering or software). As
a result, main memory serves as a powerful, natural attack surface [137, 235, 288] for an attacker to target
a victim and gives credence to the premise that processors should not implicitly trust memory devices.

For this reason, secure memory has been implemented in a variety of contexts in commodity devices [13,
125, 204, 14]. These works build on practical implementations of early literature such that developers can
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deploy security sensitive applications in dedicated secure hardware (enclaves) in which the hardware guar-
antees certain protections to application, including the vulnerabilities of the memory devices. Explicitly
maintaining guarantees of data privacy and integrity in hardware is an arduous process for large scale or
general purpose processing, and it would impose significant limitations on application performance and mem-
ory device design. For this reason, manufacturers place artificial limitations on types of workloads that can
use this hardware. Intel has restricted developers to either limited enclave size to MBs of capacity [13] or
relaxed protections for total memory protection [125, 106, 164], whereas Apple has limited the application
of their secure hardware to a small set of workloads (e.g., passocde change, enabling/disabling login prefer-
ences, adding/removing payment information, erasing all content/settings) rather than for general purpose
utilization [14]. Even in the restricted deployment, secure memory has been demonstrated to face practical
performance limitations [305, 295, 89, 65, 109].

It is crucial to improve secure memory so that it is practical for these commodity deployments. The
limited scale of its deployment is suboptimal as there are a natural applications that would benefit from secure
memory but are outside of its currently deployed restricted accessibility. Consider running an application in
a remote, shared cloud. These workloads are generally large-scale deployments (otherwise they would be run
locally), and the breadth of application types in the cloud is essentially unlimited. However, an application
in the public cloud is shared with potentially malicious guests/administrators and the developer has little to
no control over the software platforms (i.e., library or operating system versions) much less who has physical
device access.

This is the state of the world the state of the world: memory devices are subject to dangerous vulnerabil-
ities with known defenses, but the defenses are largely inaccessible for developers of commodity deployment.
As a result, these protocols may as well not exist as developers remain subject to the vulnerabilities of
memory devices. The work in this dissertation emphasizes the modernity of the secure memory problem:
the protections guaranteed by this literature are important, therefore new work in secure memory must con-
sider its impracticality as a first-order consideration so that secure memory may be realized in commodity
deployment.

1.2 Understanding the Problem
When executing a program, the processor and memory engage in an implicit handshake agreement concerning
the state of the data. To store data, the processing element asks memory to maintain its state to an address
in memory. Similarly, when the processing element later requests the data from that address, it assumes
that the memory device will return the data in its expected state. With that said, this model of interactions
between processing elements and memory devices hides implicit assumptions concerning the state of data
between when the initial store request and the subsequent load request. For instance, it assumes that data
is kept private according to the behavior of the application and that its state is free of corruption.

Unfortunately, these assumptions are impossible to guarantee without explicit enforcement. For instance,
memory devices are subject to a host of leakage-based vulnerabilities [96, 94, 279, 293] and corruption-based
vulnerabilities [296, 185, 163, 126, 114]. To assume that data is kept private from unintended access assumes
that only a single process uses the computing platform (i.e., processing elements and memory system) at a
time, which only describes rare computational instances [34, 91, 198, 15, 277]. Otherwise, memory may be
accessed via other processes sharing the processor, accelerators on the platform, I/O, etc. Worse, memory
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devices cannot guarantee the state of stored data. Memory devices are real hardware subject to glitches,
imperfections, the environment, etc. To be concrete, most deployed modern memories are dynamic random
access memories (DRAMs). A DRAM cell (i.e., a single bit of data) is composed of a single transistor and
a single capacitor. The capacitor is kept at a positive or negative charge to represent one or zero, and
the transistor emits current into the cell to update the state during writes or discharge the state during
reads. However, this integrated circuitry is known to be unreliable. For this reason, many DRAM-based
main memories typically store error correction codes (ECC) [100] in memory as metadata alongside data
to correct single bit faults in a byte. At the same time, lightweight ECC mechanisms are insufficient to
defend against more comprehensive corruptions. Thus, memory is a natural target for an adversary to leak
sensitive information and/or tamper with a victim’s essential program state to trigger malicious behavior.
As such, vigorous memory protection of physical memory devices is essential to ensure the safety of the
memory system.

Secure memory may be implemented to protect against these vulnerabilities. Generally, secure memory
describes a protocol in which the privacy and integrity of data in memory are explicitly protected [242].
This protection is implemented an extension to the logic in the memory controller device, and guarantees
that the state of any data used by a processing element was not revealed nor maliciously modified while
residing in memory. To do so, data stored in a secure memory has some associated metadata. In particular,
secure memory encrypts data to explicitly guarantee the privacy of data and maintains some metadata for
authentications of the data’s state to explicitly guarantee its integrity. This metadata takes the form of
an integrity tree (e.g., a Merkle tree [176]) over the data state against which any fetched data must be
authenticated. Thus, the task of maintaining data in a secure memory is equally the task of maintaining its
associated metadata: fetching some data requires fetching its associated metadata so that the data can be
authenticated. Updating data requires also updating the associated metadata for future authentications.

Secure memory faces a natural performance limitation. Encrypting/decrypting data and authenticating
its state adds latency to the critical path of its fetch from memory and maintaining its associated metadata
consumes some of the memory device’s available bandwidth. Both of these features of a secure memory can
be performance limiting for workloads that assume low memory latency and high bandwidth. Furthermore,
storing this metadata requires reserving space in the memory device that cannot otherwise be used for
application data. As a result, applications are more likely to need to store data in slower storage devices
with a secure memory.

1.3 Challenges and Goals
Several works from academic and industry circles have studied the deployment of secure memory in com-
modity devices [125, 106, 164]. They study the commodity deployment of SGXv1 [13, 93] which in many
ways reflects the convergence of literature describing how to securely execute a program with an untrusted
memory. There are three key takeaways from these works: 1⃝ secure memory imposes a consequential
performance overhead on memory-bound applications; 2⃝ the spatial overhead of secure memory metadata
is a significant challenge; and 3⃝ using emerging memory technologies and architectures impose significant
semantic differences to which secure memory does not naturally generalize. The work in this dissertation
explores each of these challenges explicitly.
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1.3.1 Performance

Challenge In order to provide confidentiality and authenticate the integrity of data stored in memory,
secure memory needs to fetch and maintain metadata associated with data stored in the memory device. As
a result, any additional work that a secure memory needs to perform to make these guarantees will come at
a performance cost relative to the insecure solution. The performance overhead attributed to maintaining
secure memory metadata has been well studied, but the solutions do not extend to nor consider the demands
that modern workloads make of memory devices.

Goal When considering the performance overhead of secure memory, the work in this dissertation considers
how the application behavior limits the efficacy of any optimization. As a result, this dissertation considers
the application as a first-order consideration when designing optimized secure memory architectures to
account for the otherwise limiting performance.

1.3.2 Spatial Overhead

Challenge Secure memory requires significant space both in memory and on-chip. The metadata associ-
ated with secure memory comes at a steep storage overhead. Over 14% of the capacity of a memory device
must be allocated to maintain the metadata associated with secure memory. Each byte of a memory device
allocated to secure memory metadata comes at the expense of a byte to be used by an application. In ad-
dition, secure memory requires a logical extension to the on-chip memory controller device, which occupies
on-chip area. Further extensions to this logic will demand an even greater area requirement to the already
limited space on-chip. For example, reducing the size of the last-level cache (LLC) to account for increased
memory controller area will result in fewer instructions being handled by the cache hierarchy and more
requests being made of main memory.

Goal The work in this dissertation takes spatial overhead into account. The proposed secure memory
architectures either explicitly aim to reduce the memory storage requirement of secure memory or discuss
their implications on storage overhead. Furthermore, work in this dissertation describes complexity as a
first-order consideration.

1.3.3 Emerging Memory

Challenge Main memory is not a stagnant phenomenon. Commodity deployments of new technologies
and architectures has become mainstream by way of persistent non-volatile memories (NVMs) [290, 121,
286, 52, 47, 284] and disaggregated memories (e.g., NUMA [140], CXL [62], NVLink [195], UALink [262]),
etc. These devices and architectures possess properties that impose new programming models for correct
execution. A correct implementation of secure memory similarly must adapt to these new semantics. For
example, persistent memory programming requires ensuring the crash consistency of application data [218].
Similarly, the crash consistency of secure memory metadata must be ensured for correct execution [22].
On the other hand, the appropriate programming model for disaggregated memories has yet to be agreed
upon [41, 63, 19, 289]. Similarly, the task of securing multiple memory devices who may be accessed by
multiple hosts is poorly defined [10, 3, 79, 233].
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Goal For both NVMs and disaggregated memories, this dissertation explicitly extends secure memory to
account for the new semantics imposed by emerging memories. In particular, this dissertation proposes an
architecture that explicitly considers the limitations that crash consistency impose on maintaining secure
memory metadata. Furthermore, this dissertation explores the necessary assumptions to use disaggregated
memory as an opportunity to optimize secure memory.

1.4 Thesis Statement
The thesis statement for this dissertation is as follows:

To make secure memory practical for commodity deployment, secure memory should be extended to
address performance, storage, and adaptability limitations as first-order design considerations.

1.5 Contributions
Towards the ends of producing secure memory that is suitable for commodity deployment, this dissertation
explores secure memory from two key angles: 1⃝ how might securing an untrusted memory device be made
more efficient for modern deployment, and 2⃝ how do emerging memories challenge preconceived secure
memory semantics. Towards each of these ends, this dissertation makes the following contributions:

1.5.1 Improving Secure Memory

Cordelia A key component of 1⃝ is the fact that the integrity tree serves a performance bottleneck to
modern applications. Thus, to address the performance limitations of a secure memory, this dissertation first
proposes Cordelia (under submission), a Huffmanized Merkle Tree to authenticate memory accesses. In
particular, Cordelia works from the observation that the central data structure in secure memory is designed
agnostic to the context of application behavior. In many cases, this can be reconciled by the fact that the
architecture, by way of the metadata cache, can help accelerate some recently accessed authentication paths.
However, caches are not a panacea. Applications have made increasing demands of memory bandwidth
through large scale processing of big data, and the utilization of caches with a small capacity (i.e., the
metadata cache) struggle to keep up.

To this end, Cordelia accounts for the optimization promised by the metadata cache by constructing
the integrity tree as a Huffman tree. As a result, the number of metadata accesses to fetch in order to
authenticate some data is a function of how often that data has been accessed. That is, more frequently
accessed data have shorter paths through the integrity tree.

Baobab Merkle Tree In addition to the performance bottleneck imposed by secure memory, maintaining
secure memory metadata in memory comes at a significant spatial overhead. To this end, this dissertation
proposes the Baobab Merkle Tree [256] that memoizes encryption counters on-chip to reduce the spatial
overhead of integrity trees. Implementing secure memory often uses encryption counters as the basis of the
integrity tree. If the encryption counters are memoized on-chip, then the basis of the integrity can be a
reference to the encryption counter on-chip.



6

The Baobab Merkle Tree works from the insight that many encryption counters are similar values (i.e.,
zero or one) and therefore do not require extensive storage space in memory. As a result, the in memory
reference can be a small number of bits to refer to the index in the memoization table. This dissertation
demonstrates how guaranteeing the integrity of these references is equivalent to guaranteeing the integrity
of encryption counters in a secure memory.

1.5.2 Securing Emerging Memories

A Midsummer Night’s Tree Non-volatile memories (NVMs) impose new semantics on how processors
and memories interact. In particular, applications must explicitly instruct processors to account for the
crash consistency of data as it moves through the volatile and non-volatile storage regions. Similarly, the
crash consistency of secure memory metadata must be accounted for when securing a NVM. However, doing
so naïvely can further limit the performance of a secure memory or lead to long wait times when restoring
the system after a loss of power. This dissertation proposes A Midsummer Night’s Tree (AMNT) [255] to
explicitly account for the crash consistency of secure memory.

AMNT considers various strategies as a fundamental component in designing the secure NVM. In par-
ticular, it tracks a single subtree in which a majority of accesses occur and runtime crash consistency costs
are kept low. Outside of the subtree, which comprises the majority of addresses, there is no cost to securely
recovery the memory device after a power loss. Tracking the fast subtree is achieved both in the architec-
ture and by leveraging hardware-software co-design to keep the logical extensions to the memory controller
lightweight.

CAPULET Disaggregated memories, such as CXL [62], have emerged as a technology in which multiple
memory devices may be attached to one or more hosts via I/O. However, this deployment scenario raises
important questions of how to secure data in a remote memory device that may be legitimately accessed by
another legitimate but unknown host. This dissertation proposes CAPULET (under submission) to build
efficient secure memory for these cases. In particular, CAPULET formalizes the candidate schemes for how
metadata should be maintained safely across memory devices in a disaggregated memory system.

In addition, this dissertation makes the argument that secure memory can leverage the fabric of an
interconnected disaggregated memory to optimize data authentication. Lightweight modifications to the
communication protocol between hosts in a disaggregated memory can allow for the secure private commu-
nication of metadata between devices. Given this primitive, hosts that share a disaggregated memory system
can coordinate the storage of secure memory metadata in the global set of metadata caches as a distributed
system. As a result, underutilized caches in the distributed system of caches can dynamically lend space to
hosts under strain to alleviate authentication bottlenecks elsewhere in the system.

1.6 Outline
The remainder of this dissertation is organized as follows:

Chapter 2 describes the relevant background concerning secure memory. In particular, it describes the
threat model in the context of the vulnerabilities of memory devices and the attacks that leverage these
vulnerabilities. From here, this chapter describes the protocol to guarantee the privacy and integrity of
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data in an untrusted device. This discussion entails a description of the design decisions and trade-offs, an
empirical study of each component, and a discussion of the literature that optimizes this component.

Chapter 3 describes Cordelia. To do so, this chapter starts with an intuition into the implications of
secure memory on device bandwidth. This will motivate how our approach improves the performance of
secure memory relative to the baseline protocol despite the additional latency incurred on an individual au-
thentication. From here, this chapter will describe the design and performance implications of the approach.
This section will conclude by describing the impact of Cordelia on the state of secure memory, the limitations
of the approach, and the future areas for exploration born out of this study.

Chapter 4 describes the Baobab Merkle Tree. In particular, this section starts by describing the sources
of spatial overhead due to secure memory metadata. From here, it presents the techniques applied to memoize
secure memory metadata on-chip. This entails a description of the protocol, the performance implications of
such a protocol, and the strategies to most effectively utilize such a protocol. This section will then describe
the implications of this approach on runtime and storage overhead relative to the baseline approach. Finally,
this chapter will describe limitations and future directions for exploration born out of this approach.

Chapter 5 describes A Midsummer Night’s Tree. This protocol targets secure memory for NVMs, so
this chapter starts by detailing the problem of maintaining crash consistency in secure memory metadata.
From here, this chapter details the metadata crash consistency protocol and its implications. This chapter
also describes how co-designing the physical memory allocation and reclamation procedure in the operating
system can improve the underlying architecture within the scope of the threat model. This discussion
provides the basis for the performance and recovery implications of the protocol. This chapter concludes
with a discussion of the implications of the approach and areas for future exploration born out of this work.

Chapter 6 describes CAPULET. To do so, this chapter starts by conveying the challenges associated of
deploying secure memory in the context of disaggregated memories. In particular, this chapter details various
approaches for establishing trust in a system of disaggregated hosts and memories. From here, this chapter
delves into how to configure memory controllers of a set of hosts and memories such that they may be able
to efficiently protect the state of the underlying data and the challenges presented by implementing such a
scheme naïvely. This chapter then overviews how to develop a cache pool of metadata caches by modifying
the communication protocol between hosts and memory. This allows a discussion of how disaggregated
memories can benefit the performance of secure memory. Finally, this chapter concludes with a discussion
of the limitations of this approach and areas of future exploration in secure disaggregated memories.



Chapter 2

Background

2.1 Nomenclature
This chapter describes the secure memory protocol. That is, it explores how a processor can securely execute
a program that stores data in an untrusted memory device. Generally, this protocol is implemented as a
logical extension to the on-chip memory controller by way of a memory encryption engine (MEE). When
fetching some data from memory, it is fetched at the “word” granularity, which refers to a 64-byte (64B)
block of data. This chapter also refers to pages, which describe 4-kilobyte (4kB) chunks of data. By on-chip,
this dissertation refers to the CPU(s), the register state, and the cache hierarchy as these are the devices
in which data is stored. The memory controller describes a device that sits at the edge of the processor
boundary (i.e., the interface between on-chip and off-chip) through which requests for the memory device
are serviced. On-chip components comprise the trusted computing base (TCB).

The secure memory protocol describes a procedure in which data has its privacy guaranteed and its
integrity authenticated. To keep data private, the MEE encrypts it prior to its storage in untrusted memory.
Data is typically encrypted using counter-mode encryption (CME) in which each data has an associated
counter as metadata. The integrity of data is guaranteed by maintaining two metadata fields: 1⃝ a message
authentication code (MAC) and 2⃝ an integrity tree. MACs are typically hashes of the data state (referred
to as hashed MACs, or HMACs).

The integrity tree is a tree of hashes over the encryption counters, referred to as a Bonsai Merkle Tree
(BMT). Elements in the BMT are referred to as nodes and a node is defined as the hash of its associated
children. Thus, authentication with a BMT requires computing the hash of the untrusted data and comparing
it against the expected value (i.e., the parent node). Seeing as the parent node may be untrusted, this process
is repeating recursively until it is authenticated against some trusted value (i.e., the on-chip BMT root).
This sequence of nodes used to authenticate some data is referred to that data’s “authentication path” and
is sometimes referred as its “ancestry” through the BMT. To reduce the height of the tree, the BMT is 8-ary
(i.e., each node has eight children) to increase its density.

To help optimize secure memory, the MEE employs a small cache for metadata fields (i.e., encryption
counters, HMACs, BMT nodes). This cache is referred to as the “metadata cache.” Seeing as this cache
resides in the MEE (and in the on-chip memory controller by proxy), values in the metadata cache are
considered trusted and can serve as “roots of trust” for authentication.

8
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2.2 Establishing the Threat Model

2.2.1 Adversaries and Victims

The “A-B-C” attacker profile [37] characterizes attackers as conforming one of three potential profiles. 1⃝
An access seeking attacker wishes to gain login access on a platform to which they do not have access. For
example, consider a locked mobile computing device that has been stolen by the adversary. 2⃝ A breaching
attacker has guest access to a platform shared, and may wish to escalate their privileges or corrupt other
processes co-located on the platform. An example of this may be a legitimate guest user of a cloud resource or
guest application on a victim’s local device (i.e., a webpage). 3⃝ A conspiring attacker may both legitimately
run root privileged software on the same platform as a victim and have physical access to the platform. Such
an adversary may be the provider and operator of a cloud instance, and any user of the cloud system is a
potential victim. Thus, an attacker may be able to execute software with various degrees of privilege and
may have physical access to a device. Note, this classification aims to build an intuition of the potential
adversary, but by is by no means comprehensive.

In the aforementioned profiles of attackers serve as adversaries for a variety of potential victims. In
particular, an operating system or container may restrict the permissions granted to a breaching attacker,
and a guest process may be the target of a conspiring attacker. To ensure the safety of a victim from
memory vulnerabilities, the memory must be safe from illegitimate reads and writes of its contents. If an
adversary has the ability to read the contents of memory, they may be able to read sensitive victim data
(e.g., passwords, private end-user data, secret keys, proprietary program state, etc). Furthermore, if an
adversary can write the contents of data, they may explicitly update their permissions [21, 70, 221], inject
malware [239], or execute arbitrary malicious payloads [38].

2.2.2 Physical Vulnerabilities of Memory Devices

Attacks that maliciously utilize device properties to trigger unintended behaviors are considered physical
attacks. These attacks may be performed in a variety of contexts. Main memory provides a load/store
interface via the memory controller device [43]. Traffic to the memory controller may come from a variety of
sources, and serves as a convenient backdoor for exploitation as a result. Furthermore, physical features of
memory devices (i.e., data remanence [96], electromagnetic coupling [46, 179, 212], bridges between signal
lines [18], and hot-carrier injections [53]) all serve as potential vulnerabilities for data leakage (read) and/or
corruption (write).

Read. Seeing as legitimate accesses from the memory hierarchy may appear on the memory bus as last-level
cache (LLC) misses or writebacks, an attacker with physical access to the device may inject traffic on the
memory bus to emulate this behavior [110]. Legitimate memory requests may also come from the processor
via a direct memory access interface (DMA) [21], the network interface card (NIC) [70], an I/O device [221,
26, 223], etc. These interfaces with the memory device are important for legitimate purposes such as remote
debugging [238], forensic analysis [42], and/or legal interception of network traffic [201]. At the same time,
these interfaces similarly allow malicious channel to leak data at an adversary-specified address. Assuming
an adversary knows where some sensitive data is stored, they can use these mechanisms to leak it and achieve
their malicious ends.
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Suppose, however, that an adversary does not have prerequisite knowledge of where some sensitive data
is located. To work around this, the attacker may want to leak all data in memory on which they can process
offline. To achieve this, they may perform a cold-boot attack [96]. Cold-boot attacks leverage the fact that
DRAM retains its state for several seconds after power loss. To exploit this vulnerability, the adversary will
power off the device and transfer the remaining data prior to the loss of state. Afterwards, the adversary
may tool the BIOS to run an application that transfers all contents of memory across the network to an
alternative device, and complete the transfer by powering on the device. If the adversary does not have
permission to update BIOS, they may physically detach the memory device and re-attach it to an adversary
controlled platform and copy its contents locally.

Write. Much like read-based vulnerabilities, an adversary may use one of the several available channels
to inject write-traffic to the memory controller to corrupt data. Even without injecting traffic, however, an
adversary with physical access to a memory device may perform targeted corruption techniques on a memory
device using radiation [165, 166, 170] or magnets [122].

Even without physical access to the device, an attacker can leverage properties to trigger leakage-induced
corruption of memory from software [133, 163, 118, 283, 126]. Accessing a memory location in a tight loop can
cause corruption in adjacent words within the memory bank (i.e., the cache line associated with an address).
For example, a Rowhammer attack [133] that uses x86 assembly is demonstrated in Listing 2.1. The program,
in a tight loop, dirties the data at a given address and asynchronously flushes the provided address from the
cache hierarchy in line 4. Note, this program is simple and requires no privileged instructions, so it can be
performed by an adversary who can run software on the same device as a victim. This may be because both
adversary and victim are running some software on a remote device (i.e., in the cloud) or the adversary is
running some guest software on the victim’s device (i.e., a webpage).

Listing 2.1: Sample Rowhammer attack.

1 char *addr;
2 while ( 1 ) {
3 *addr += 1; // dirty the data at addr
4 asm( "clflush %1" : "r" (addr) ); // x86 instruction to flush addr's cache line
5 }

The task of defending against individual tasks is intractable. There are several software gadgets that
can be leveraged to perform Rowhammer attacks [186], so detection mechanisms in software are insufficient.
Furthermore, new attacks (i.e., RowPress [163] and RAS Clobber [126]) have recently demonstrated com-
parable capability to Rowhammer, but have different access patterns. Thus, the emergence of new, distinct
attacks means defending against these attacks individually in hardware is impractical and insufficient.

2.2.3 Overview of Candidate Threat Models

Data on the processing chip is not subject to the same vulnerabilities as a memory device, so data on-chip
(i.e., in the register and cache state) is trusted. That is, the chip boundary also serves as the boundary of
the trusted computing base. Data in memory is subject to the vulnerabilities of a memory device. Given the
heterogeneity of likely deployments, no assumption about the attacker can be made. That is, an adversary
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may have physical access to the device and may run programs with arbitrary permissions on the same
platform as some victim. The victim application is assumed to be secure from software-based exploitation
at runtime.

Threat Model 1 Given the access of an adversary, a secure memory should be encrypted, but the integrity
of data is out of scope. That is, the role of an MEE is merely to ensure that data is safely encrypted prior
to its storage in the untrusted memory device, and to decrypt data as it is fetched from the memory device
for safe on-chip processing.

Threat Model 2 The privacy and the integrity of data should both be guaranteed by the MEE, but the
integrity mechanism does not require authentication. In this threat model, the MEE is responsible for storing
encrypted data in memory alongside some MAC associated with the state of the data. Storing data entails
both the encryption of data and maintaining the MAC of the data in memory. When that data is later
fetched, it is decrypted and its state is authenticated against the state of the MAC. If the authentication is
successful, then the decrypted data can be returned across the chip boundary for safe processing. Otherwise,
a hardware panic is thrown.

⋆ Threat Model 3 ⋆ In addition to ensuring the privacy and integrity of data in the untrusted memory
device, the MEE is responsible for guaranteeing the integrity of MACs stored in memory. To do so, it must
deploy an integrity tree to establish a root of trust on the processing chip. Authenticating data entails
both its authentication against the MAC and the authentication of the MAC against its parent nodes in the
integrity tree. In this threat model, storing some data in memory entails updating the associated MAC and
the integrity tree path that protects the MAC. Ultimately, this dissertation assumes this to be the threat
model.

Threat Model 4 Beyond protecting the MACs with an integrity tree, no information should be leaked by
the secure memory via side channel. That is, the victim behavior when accessing a secure memory should
be oblivious to an adversary with access to the secure memory.

2.2.4 Threat Model Motivation

Consider the following proposition: if data in memory is encrypted, then the precise state of the data cannot
be gleaned (i.e., proposed threat model 1). As such, an adversary copying secret data does not reveal the
sensitive state, and the malicious ends cannot be achieved. Furthermore, seeing as the sensitive state is now
private, any targeted corruption of the data seems to be mute. That is, the attacker cannot determine what
to corrupt given the privacy of the data. Thus, they are capable of blinded random corruption.

As it turns out, blinded random corruption is a sufficient basis for an attacker to perform significant
attack. In particular, it has been demonstrated that performing undetected random corruption of encrypted
data can allow an adversary to bypass a login program to grant themselves access to a device on which they
otherwise do not have permissions [37]. Furthermore, given the access of the adversary in the threat model,
while corruption is likely to be random, the possibility of corruption may not necessarily be blind. This
is dangerous, as corrupting data to arbitrary values can have dangerous implications for targets of certain
data. For example, corrupting the NULL terminator of a string can dynamically trigger a buffer overflow
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vulnerability [149]. Blindly corrupting an index can trigger an out-of-bounds access [60] that may either
crash a program’s execution or trigger invalid dereferences to leak sensitive data.

In addition, an encrypted memory remains susceptible to replay attack [75, 242, 87, 243]. Suppose an
adversary can read the state of an encrypted memory [96]. Although sensitive data in this memory is private
from the adversary, they are able to see the state of both the encrypted data and any metadata used to
encrypt that data. If the data is later updated to some new state, the adversary can leverage the corruption
vulnerabilities of the memory device to rollback the state of the data to its earlier state. This attack is
powerful as the adversary can set some known data to the encrypted memory and record its state. From
here, they may replace the data at some sensitive address with their known, dangerous payload.

To account for the potential corruption of data, a MAC associated with the data state may be stored
in the memory device (i.e., proposed threat model 2). As such, any corruption of data will be detected by
a mismatch of the computed and expected MAC values. However, maintaining a MAC in memory is still
susceptible to replay attack. Ultimately, the replay attack vulnerability is a function of having a root of
trust outside of the vulnerable device. Seeing as the MAC is subject to corruption in this threat model, it is
possible for an attacker to replay the state of both the data and its associated metadata (i.e., the MAC) to
the prior state. The MEE has no way to distinguish between a legitimate pair of data and MAC as compared
to some replayed data and its associated replayed MAC.

This dissertation assumes that MACs are protected with an integrity tree (i.e., proposed threat model
3). The fourth proposed threat model (i.e., an oblivious secure memory) is deemed too conservative in
practice [93] outside of a limited set of lightweight use cases [14]. While some prior work has explored the
information leaked via side channel in secure memory hardware [264, 55, 265], mitigating an adversaries
ability to learn which locations in memory are used, when they are used, and how often they are used
requires extensive and arduous efforts [307, 222, 203, 227]. Furthermore, given that on-chip resources suffer
from side channel vulnerabilities [293, 279, 211], an adversary can determine the access pattern of a victim
through other means1. Thus, the vulnerabilities of a memory device exposed to an adversary warrant efficient
protection against corruption-based attacks. As such, while hiding information leakage in a secure memory
serves as an ideal case, efficiently defending against leakage of data contents and corruption of its state is a
more pertinent issue.

2.2.5 Threat Model Formalized

This work assumes a well understood and studied threat model [291, 220, 146, 310, 294, 80, 219, 278]. Data
in memory is untrusted and must be kept private with its integrity guaranteed by some trusted value kept
on-chip (i.e., an integrity tree root). The chip boundary serves as the boundary for the trusted computing
base. Side channels are out of scope.

2.3 Privacy
In order to guarantee the privacy of data, data must be encrypted prior to its transmission across the trusted
boundary. That is, data must not be in plain-text state prior to its storage in a vulnerable, untrusted memory

1To account for this, commodity deployments of such defenses that do conform to this threat model limit secure execution
to secure co-processors that is free of any shared resources and where any processing components are provably isolated and
free from information leakage (e.g., timing, differential power analysis, etc [14].
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Figure 2.1: Encryption methodologies. Direct encryption (A⃝, left) sends data directly to the AES engine to
produce encrypted data. Counter-mode encryption (CME, B⃝, right) sends an input seed to the AES engine
to produce a one-time pad (OTP), which is XOR’ed with the plaintext to produce the encrypted data. In
both methodologies, using the ciphertext as input reproduces the plaintext.

device.

2.3.1 Encryption Methodology

Generally, encryption algorithms can be classified as one of “direct” or “counter-mode” encryption algorithms.
These approaches are highlighted in Fig. 2.1.

Direct Encryption A direct encryption algorithm, such as the Advanced Encryption Standard (AES) [206],
transforms data from its plain-text state to a cipher-text with a hardware private key prior to the storage
of the cipher-text in memory [90, 155, 156, 69]. Later fetches for that data uses the same on-chip engine in
the MEE to decrypt the cipher-text back to plain-text.

Counter Mode Encryption A counter-mode encryption (CME) instead uses AES to produce a unique
encryption pad which can be XOR’ed we the plain-text data to produce the associated cipher-text [159]. To
produce a secure encryption pad, CME applies the direct encryption methodology (i.e., AES engine in the
MEE) to an input seed associated with the data as opposed to applying it to the data directly [159]. The
AES specification demands that, when encrypting the same data multiple times, a unique seed is used [206]
to ensure that an attacker cannot recover the private AES key. Generally, the encryption seed should be
both spatially and temporally unique. That is, each data word should have a unique seed and updates to the
data should result in a new seed for that address. Thus, the encryption seed is composed of a unique counter
that reflects the state of the data comprises part of the input and the address of the data. Whenever data
is accessed, the encryption counter is incremented so that the produced pad is unique. That is, the output
produced by the AES engine from the encryption seed is a one-time pad (OTP).

Generally, there are three encryption counter methodologies that could be used in CME: a single global
counter, per-block local counters, or split counters [291]. While using a global counter is appealing (the
counter can be maintained on-chip by the MEE and the encryption pad can be precomputed [232]), a secure
memory implementation using a single global counter is impractical. The produced encryption pad changes
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Figure 2.2: Latencies to decrypt fetched data. Assumes 150 cycles to access DRAM, 53 cycles to use the
AES engine [142], 2 cycles to access the cache, and one cycle to perform an XOR. When using Counter-Mode
Encryption (CME), the counter and data are fetched in parallel.

any time a global counter is incremented, so all data encrypted with that pad must be decrypted prior to
its modification, and then re-encrypted with the new pad. Alternatively, a per-cache block local counter
can be used to achieve a similar scheme. This approach is practical, as updating a block only entails the
re-encryption of that block. That is, because each data word in memory has its own encryption counter, each
word will have an associated tag, and updating one word/counter will not impact the produced encryption
pad of the other data. Unfortunately, this requires maintaining a local encryption counter for each word;
given the limited space on-chip, storing each of these counters in the MEE is infeasible. Consequently, local
counters need to be stored in memory as “metadata” for encryption. It has been proven that merely knowing
this metadata is insufficient to leak the state of the stored data [29].

In practice, secure memory literature and implementations have converged on “split local counters” [291]
as the basis for encrypting data. This implementation elegantly solves two key problems associated with
maintaining a local counter associated with each cache block: 1⃝ there is spatial overhead attributed to
storing each of these counters in memory, and 2⃝ a seed may still be duplicated if the counters overflow.
Handling an overflow requires regenerating the hardware private key and re-encrypting all data in memory
(e.g., equivalent to incrementing a single global counter), so ideally this is an infrequent operation. However,
these two features of CME are at odds with one another; shrinking the counter size can reduce spatial
overhead but increases the ease of triggering private key regeneration in the MEE. Split counter mode
encryption proposes maintaining two local counters per data at different granularities. Each data word
(64 bytes) has a 7-bit “minor” counter, and each page (4kB) has a 64-bit “major” counter. As a result,
each cache block of encryption counter metadata is associated with a page of application data. In the split
counter scheme, the (7-bit) minor counter is incremented by default. On overflow, the major counter is
incremented. Seeing as the major counter is associated with all data in the page, each of these data must
also be re-encrypted. Upon doing so, the other minor counters in the page may also be set to zero to reduce
the likelihood of incrementing the major counter multiple times.

Formally, split counters require 8-bits of spatial overhead per data word (64 bytes). Furthermore, while
incrementing a major counter requires re-encrypting all data in a page, a major counter overflow requires
at least 27× more accesses than a single 64-bit local counter (the major counter is only incremented on
minor counter overflow). Thus, split counters alleviate both sides of the limitation trade-off space imposed
by per-block local counters.

Implementing encryption algorithms in the MEE comes at a performance cost by putting decryption, an
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expensive operation, on the critical path of a cache block fetch [71, 159]. To account for this, encryption
counters in CME may be cached in the metadata cache in the MEE. Furthermore, the OTP can be computed
in parallel with the data fetch so long as the MEE has the encryption counters. Performing the OTP
computation in parallel with the data fetch can have huge benefits in terms reducing the latency on the
critical path of fetching data as compared to direct encryption [231, 232, 292, 243]. Fig. 2.2 shows the
latencies associated with fetching data in a direct-encryption memory as compared to using CME on a
metadata cache hit and miss.

2.3.2 Encryption Performance

This section empirically explores the implications of various encryption design decisions on end-to-end run-
time overhead. In particular, it explores three schemes: 1⃝ no security (which serves as a baseline), 2⃝ direct
encryption , and 3⃝ counter-mode encryption (CME). Direct encryption and CME are described in Sec. 2.3.1.
Within these configurations, this analysis explores the impact of several design decisions.

This analysis uses the GAP [25] benchmark suite with synthetic graphs of various input sizes2. In
particular, the suite consists of five graph analysis benchmarks: bc computes the “betweenness centrality”
of two graphs; cc computes the “connected components” of the graph; tc performs “triangle counting” in
the graph; pr performs a “page rank” computation on the graph; and bfs performs a “breadth-first search”
computation on the graph. This analysis is done with varying input sizes to demonstrate the how the
approaches scale as the workloads increase in memory intensity.
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Figure 2.3: Performance overhead of a secure memory with
direct encryption and counter-mode encryption relative to
an insecure memory controller.

Encryption Overhead Fig. 2.3 shows the
overhead of using a default configuration of di-
rect encryption and counter-mode encryption
(CME) relative to a memory controller with-
out secure memory. In particular, direct en-
cryption exhibits up to 80% overhead (38%
overhead on average) relative to having no se-
curity. A memory controller that implements
CME with a 64kB metadata cache exhibits up
to 15% overhead (4% overhead on average) rel-
ative to having no security. The analysis shows
that there is a direct relationship between the
memory intensity of a workload and the over-
head of the encryption. That is, as the graph
input size increases, so does the overhead of
performing encryption as they tend to have
larger memory footprints. If an application ex-
hibits a larger memory footprint, then accesses memory at a higher rate as fewer accesses will hit in the

2This is the default configuration to do this performance in gem5. Note, in this evaluation “small” refers to “test” in gem5,
“medium” refers to “small”, and “large” refers to “medium.” The resource for the GAP benchmark suite does not contain
a default “large” input size. The test input graph has 213 nodes, the small input graph has 221 nodes, and the medium
input graph has 223 nodes.
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on-chip cache hierarchy. Memory requests in an encrypted memory have additional work on the critical
path of the memory fetch, so more memory requests (i.e., misses in the cache hierarchy) will result in longer
performance. This is formalized in the observation below:

Observation 1: The overhead of memory encryption is a function of the rate at which the application
accesses memory.
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Figure 2.4: Hit rates in the metadata cache for encryption
counters across workloads.

Note, the results indicate that direct en-
cryption incurs larger overhead than CME.
This is a function of the fact that, on read
requests, the OTP can be produced in parallel
with the fetch for data (described in Sec. 2.3.1).
Furthermore, seeing as the encryption counter
can be fetched from the on-chip metadata
cache, the latency of this operation is hidden
on hit cases. The workloads in which the over-
head of CME is most evident are those with
larger footprints, in which the efficacy of the
cache is reduced. Fig. 2.4 shows the hit rate
for encryption counter fetches in the metadata
cache across the workloads. Note that there
is a strong negative correlation between CME
overhead and metadata cache hit rate. Con-
sider the pr benchmark. When using the small input size, the performance overhead of CME is less than
1%, and the metadata cache hit rate is over 99%. When increasing the graph size to the medium input, the
metadata cache hit rate decreases to 60% and the overhead of CME becomes 12% relative to the insecure
baseline. With the large input graph, the metadata cache hit rate for encryption counters decreases to 30%
and the overhead of CME increases to 14.5%. Given this analysis, the following can be stated:

Observation 2: CME has per word metadata, so the relative overhead of that methodology is inversely
proportional to the metadata cache hit rate.

For the most part, direct encryption serves as an “upper bound” on CME performance. All accesses will
need to go through the cipher engine and will have additional critical path latency as a result. However,
this is not a tight upper bound. The additional fetch in CME for the encryption counter puts an additional
demand on the available bandwidth of the memory device. In cases where the device bandwidth is saturated,
the request for data and its associated encryption counter will not be performed in parallel, and the overhead
of CME may be larger than in direct encryption. In this evaluation, the additional bandwidth requirement
of CME may be was still below the available device bandwidth, therefore the parallelism did not result in
a performance bottleneck. Typical DDR4 devices typically support peak bandwidth of approximately 25
GiB/s [1], so the device bandwidth is not saturated in these cases.

Fig. 2.5 shows the average bandwidth utilized by each benchmark and configuration. It shows that
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Figure 2.5: Average memory bandwidth utilized by different
security configurations in terms of GB/s.

bandwidth requirements increase as workload
size increases and that CME typically occu-
pies more bandwidth than the baseline ap-
proach. In particular, the memory bandwidth
required in a CME memory system requires
2.4× more bandwidth than the no security
baseline. This trend is relatively consistent
across small, medium, and large input sizes,
where the bandwidth overhead of CME is 4%,
22%, and 36% respectively. The bandwidth
overhead can be attributed to the additional
requests to the memory device for encryp-
tion counters. Many of these requests can
be serviced by the metadata cache and, in
turn, avoid the memory device, but misses and
writebacks from the metadata cache must still be handled by the memory device. Thus, the following claim
can be made empirically:

Observation 3: CME requires more bandwidth than a baseline application due to the fetches for en-
cryption counter metadata.
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Figure 2.6: Performance overhead of direct encryption with
various cipher latencies relative to an insecure memory con-
troller. Note, 53 cycles is considered default.

Note, direct encryption actually requires
less bandwidth than the baseline as the addi-
tional time required to cipher certain requests
allows the elimination of parallel requests for
data at similar addresses. This optimization is
described in detail in Appendix A. At a high
level, the increased latency will cause more
parallel memory requests for the same address
and these requests can both be processed by
a single memory packet. The CME implemen-
tation also takes advantage of this optimiza-
tion (including fetches for encryption coun-
ters), but it is not as effective for two reasons:
1⃝ ciphers can be performed with lower end-to-
end latency, and 2⃝ encryption counters still
require an additional fetch.

Cipher Latency Sensitivity To explore
the potential performance benefits and degradation of the cipher latency, this section explores the im-
pact of cipher latency on direct encryption performance. This is depicted in Fig. 2.6. The presented results
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Figure 2.7: Sensitivity study of bandwidth and hit rate relative to metadata cache size.

are normalized to the number of cycles to execute the benchmark with no security (not depicted). In par-
ticular, the figure shows the number of cycles to execute each workload normalized to a memory controller
without secure memory. When cipher latency is eliminated, the overhead of performing direct encryption
is relatively negligible compared to no security. On the other hand, the overhead may be as large as 7.7×
when cipher latency is dramatically increased. Notably, the cases with the most significant overhead are the
those workloads with significant memory footprints. This is consistent with the finding of Observation 1.
That is, more latency on the critical path of a memory fetch is more significant for workloads that access
memory more frequently (i.e., have a larger memory footprint).

Counter Cache Size Sensitivity This section also explores the impact of metadata cache size on en-
cryption counter hit rates. The aim of this study is to explore the relationship between metadata cache
utilization and the behavior of the secure memory system as increasing the size of a cache is a natural way to
improve utilization. Thus, metadata cache size serves as a proxy for “utilization,” which is explored directly
by studying the cache hit rates in Fig. 2.7b.

For the most part, varying metadata cache size does not have a significant impact on end-to-end perfor-
mance aside from workloads in which the overhead of CME was highest (e.g., an 8% performance improvement
when using a 2MB metadata cache as compared to a 64kB metadata cache in the pr-large workload). That
is, performance improvements are only evident when the impact on metadata cache hit rate is dramatically
positive. Fig. 2.7b shows the hit rate in the metadata cache for various configurations with different meta-
data cache sizes. Consistent with Observation 1, workloads with larger memory footprints tend to have lower
metadata cache hit rates, and hit rates can be improved as the cache size increases. For each workload, the
hit rate in with a 2MB metadata cache is over 90%.

Effective metadata cache utilization is closely related to the bandwidth utilized by an application.
Fig. 2.7a demonstrates the impact of metadata cache size on average memory bandwidth demanded. The
reported metrics are normalized to the default metadata cache size (64kB). As evidenced by the evaluation,
not using a metadata cache would result in 70% additional bandwidth demanded on average across the
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suite. With a 2MB metadata cache, on the other hand, the demanded bandwidth can be reduced by 13%.
For workloads in which the bandwidth demands of CME are highest relative to the non-secure alternative
(e.g., large input sizes), the reduction is by over 25%. Therefore, improved metadata cache utilization most
benefits the memory bandwidth for applications with larger memory footprints. Given this analysis, the
following observation can be formalized:

Observation 4: As metadata cache utilization improves, the memory bandwidth utilized by secure
memory decreases.
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Figure 2.8: Hit rate in a 64kB metadata cache with different
encryption counter arity configurations.

Counter Arity Sensitivity Observation 4
implies that improving metadata cache uti-
lization is of paramount importance. Such
is the motivation for having the split-counter
design in CME. This section studies the im-
pact of various “arities” (i.e., the number of
data words that leverage the same encryption
counter block) on metadata cache utilization.
By default, there are 64 data words per en-
cryption counter block (i.e., 64 seven-bit minor
counters). By increasing the arity, the effective
“utility” of a metadata cache block is increased
as more data depend on it. Fig. 2.8 shows the
impact of various encryption counter arities on
hit rates in a 64kB metadata cache (the stan-
dard size for secure memory). Note that, with
unary or binary encryption counters, metadata cache hit rates decrease dramatically. These configurations
can be characterized by two features: 1⃝ there are only one or two data blocks respectively that depend
on each encryption counter, and 2⃝ the number of encryption counters needed to protect the memory state
must increase. Conversely, 4096-ary encryption counters result in near perfect hit rates in the metadata
cache. In these instances, 256kB of data are protected by a single encryption counter. Consequently, it is
highly likely that the relevant metadata for an encryption/decryption will reside in the metadata cache in
these cases. More formally:

Observation 5: Metadata cache utilization can be improved as the utility of metadata cache blocks
increases.

2.3.3 State of the Art

The performance overhead of encryption is largely a function of the cipher engine latency. Seeing as the
cipher is on the critical path of a memory fetch, a faster decryption implies a lower latency to return data
to the processor. In addition, Sec. 2.3.2 highlights how CME can significantly outperform direct encryption,
especially given an effective metadata cache. As a result, the state-of-the-art performance optimizations for
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encryption typically concern improving the latency of the cipher engine and the utilization of the metadata
cache for encryption counter metadata.

For the most part, secure memory assumes an encryption engine utilizing some form of Galois Counter
Mode Encryption (G-CME) [172]. To further reduce encryption latencies, prior work, such as ELM [115],
lean on improving algorithmically implemented cryptographic primitives. This particular approach is based
on offset-codebook mode [215] encryption to reduce the number of tweakable block cipher [160] iterations.
However, efforts to improve cipher latency are orthogonal to secure memory and secure memory can treat
the encryption methodology as a black-box.

Alternatively, seeing as CME performance is closely tied to metadata cache utilization, several works have
considered strategies to improve the utility of encryption counter cache blocks. As described, split-counter
mode encryption [291] proposes a scheme in which every 64-byte data word is effectively protected by 8-bits
of encryption counters (i.e., a private 7-bit minor counter and a shared 64-bit major counter with 63 other
words). To improve the utility of an encryption counter cache block, more data would need to be protected
by the same amount of metadata (i.e., the metadata size per 64-bytes of data must be reduced from 8-bits).

To achieve this, several prior works have made observations about the contents of encryption counters
at runtime. For instance, morphable counters [219] observes that encryption counters largely have the same
contents due to infrequent access of their associated data. As such, seeing as many counters are either “0”
or “1”, the size allocated to these counters can be compressed. This scheme proposes two potential states for
encryption counters (i.e., compressed or decompressed) denoted by a reserved bit from the major counter.
If the minor counters are infrequently used, then the space allotted to them can be decreased and more
counters can be stored within the block. Similarly, common counters [187] makes the observation that GPU
memory is often only ever written to once when the data is set on initialization. As a result, this work
proposes even further compressed encryption counters for data that is explicitly marked as read-only by the
application and/or GPU. This work has led to several follow up works on building secure memory for these
workloads [300, 2, 281, 188, 132].

2.4 Hashing
The MEE guarantees the integrity of data (i.e., that data hasn’t been corrupted) in memory by maintaining
metadata associated with the state of the data [33]. Data privacy alone is insufficient; an attacker can
corrupt some cipher-text such that the MEE produces garbage bits post decryption rather than the intended
data [37]. For this reason, the MEE also maintains a set of cryptographic hashes associated with the data
to ensure that data has not been corrupted during its storage.

Determining the integrity of some value is a well studied problem. A message authentication code (MAC)
gives a mechanism for some party to validate the state of some untrusted value [155, 156, 28]. Using a MAC
serves as a “cryptographic checksum” [28] for some data that may have been corrupted in the presence of
an untrusted environment, which makes it a natural candidate for secure memory. As such, the integrity
of data can be checked despite its storage in an untrusted memory device so long as both the data and its
associated MAC are stored.

A secure MAC is one in which an attacker cannot produce a legitimate code for some arbitrary data. As
such, deriving a MAC is functionally equivalent to using a cryptographic hash function [236]. That is, the
hash function should have the following properties: 1⃝ the MAC is computed from a one-way hash function
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(i.e., if the hash of x is H(x), then it should be computationally infeasible to find x from H(x) [175]), and 2⃝
the MAC should be produced by a collision resistant hashing function (i.e., if the hash of x is H(x), it should
be computationally infeasible to find x′ that also produces H(x) [175, 174]). In particular, secure memory
literature and deployments have converged on a keyed hash-based message authentication code (HMAC) [28,
261, 135] to facilitate the checking of data integrity. HMACs have been proposed as practical relative to
other protocols such as NMACs [28] by considering the hashing algorithm as a black-box. Further innovation
of MACs (e.g., CMACs and KMACs [299]) have been proposed with enhanced security guarantees, but come
with performance limitations.

Innovation in MAC security and efficiency is important, but developing these protocols alone is orthogonal
to the secure memory problem. Instead, the primary concern in secure memory is the utilization of the MAC
values. Consider the MAC based secure memory protocol proposed in Gilmont, et al [90]. To authenticate
some data entails: 1⃝ fetching that data and its associated MAC, 2⃝ computing the MAC from the fetched
data, and 3⃝ comparing the computed MAC to the stored (expected) MAC. So long as the computed
and expected MAC values are consistent, the MEE assumes that the data hasn’t been corrupted. Such
an implementation is sufficient to defend against spoofing attacks [75] (i.e., replacing legitimate data with
arbitrary malicious data).

2.5 Integrity Trees

Figure 2.9: A Merkle tree built over untrusted mem-
ory. HMACs of the data serve as the leaves of the
tree, and multiple HMACs are hashed to produce the
parent node. The root of the tree is a single value that
can be stored on-chip.

Unfortunately, using a MAC alone is insufficient to
make this guarantee as MACs are subject to replay
attack [243, 156, 217, 291]. Given the threat model,
attackers have access to the state of data and meta-
data in memory. Suppose that at t0 an adversary
reads data D with MAC MD. At t1, the data and
its associated metadata are legitimately updated to
D′ and MD′ . Given that the adversary has the abil-
ity to corrupt the data, they are able to revert that
data from D′ back to D and HD. This is a powerful
attack capability, as adversaries can use this vulner-
ability to leak and/or perform targeted corruptions
of data [181].

Ultimately, this vulnerability is born out of the
fact that the MACs, much like encryption meta-
data, need to be stored in the untrusted memory
device. To account for this, MACs themselves re-
quire some authentication. Fig. 2.9 shows how this
can be achieved. Seeing as MACs are untrusted,
they require authentication. This can be achieved
by maintaining the MAC of a set of untrusted MACs, and can repeated recursively. Notice that, in such a
scheme, the MACs are arranged hierarchically such that they form a Merkle tree [173].

To this end, a Merkle tree serves as a strong basis for a secure memory [33, 87, 291, 217, 242]. Merkle
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trees have been applied in a variety of contexts in order to trust data that is otherwise subject to potential
tampering [167, 44, 24, 307, 287, 259]. In particular, the construction of a Merkle tree implies that only
trusting the tree root is sufficient to authenticate the integrity of all untrusted data in the underlying memory
device [155, 93, 69, 93]. As such, storing this single root of trust in trusted hardware (i.e., in the trusted
computing base on-chip) means that any authentication against it can in turn be trusted. To authenticate
some data against a Merkle tree: 1⃝ the MAC is computed from the data, 2⃝ the MAC is authenticated
against the stored MAC, 3⃝ the word containing the MAC becomes the data to authenticate, and 4⃝ the
process is repeated until an authentication can be made against the Merkle tree root. Note, the Merkle tree
root reflects the state of the entire underlying memory.

Storing secure memory metadata in an on-chip cache can significantly benefit secure memory [291, 217,
242, 251, 87, 75, 220, 252, 219, 209, 270, 268, 269, 146, 145, 209, 247, 22, 23, 8, 294, 82, 83, 80, 81, 101,
102]. The benefit of doing so is two-fold: 1⃝ as described in Sec. 2.3, metadata can be fetched at lower
latency than going to memory, and 2⃝ the metadata cache resides on-chip, so cached values are trusted [88].
That is, when authenticating some data, integrity tree nodes need to be fetched from the leaves up to the
first metadata cache hit (or the root of trust if none of the path is in the cache) due to an expansion of the
trusted computing base (TCB). This benefits latency as fetching metadata on the critical path of a memory
operation can be achieved in fewer cycles if that metadata resides in the cache. Furthermore, the metadata
cache benefits bandwidth by reducing the number of fetches for security metadata that need to go to the
device, thereby protecting memory device availability.

Given that the metadata cache benefits both of the key performance limitations in secure memory, the
study of its efficacy is paramount. Early secure memory proposals considered storing encryption and/or
integrity metadata in the on-chip last level cache (LLC) [88, 87, 242, 291], but metadata pollutes these
caches and reduces LLC hits for data. This implies more misses for data in the LLC, and more requests
for data were sent to the memory device as a result. Such is the motivation for having a separate cache
dedicated particularly for secure memory metadata [217]. In fact, several works have proposed a dedicated
cache per metadata type (i.e., integrity tree nodes, encryption counters, MACs) to capture improved cache
utilization without having cross-type interference. MEEs that have been deployed in practice, however, tend
to have a single cache dedicated for all metadata types [93, 103].

Metadata accesses do not conform to the same heuristics as application data [145]; accessing an un-
cached integrity tree path is a pointer-chasing operation from leaf-to-root. As such, data accesses to random,
uncached paths in the integrity tree are unlikely to exhibit locality until close to the root. On the other
hand, a data access that does exhibit locality may share an ancestor in the integrity tree closer to the leaves.
The tension between these two cases implies that several cache blocks have limited utility after their initial
fetch, but knowing what these cache blocks are is non-trivial. Furthermore, to ensure that the tree root is
consistent with the state of the data, updates to the data state entail updating the entire leaf-to-root path.
To load each of these blocks into the metadata cache may cause further interference in what is currently
cached.

Several works have considered placement and replacement for metadata caches. Given this access pattern,
traditional caching do not extend to metadata caching. For example, Belady’s optimal cache replacement [27]
does not apply to metadata caches [145]. The intuition for this phenomenon is that each potential replacement
ultimately changes the access pattern for future authentications. As a result, some works have considered
alternative approaches to choose targets for metadata placement and replacement [144]. For example, the
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Figure 2.10: Bonsai Merkle Tree (BMT, left) and a tree of counters (SGX style tree, right). Parent nodes in
a BMT are the concatenated hashes of their children. Leaves in a tree of counters are encrypted with the
nonce in the parent node. Inner tree of counter nodes maintain a MAC of its state using the nonce from its
parent node. In both, the leaves protect encryption counters rather than data.

set of subtree roots in the BMT in the metadata cache may be updated based on child access behaviors [80].
Doing so efficiently, however, is difficult to achieve outside of extreme cases (i.e., a write-through cache for
non-volatile memory). Alternatively, lazily propagating updates through cached nodes can help avoid the
costly operation of updating the tree root [243]. To achieve this, metadata cache writebacks are coupled with
loading the parent of an evicted value into the cache with the updated parent node. In doing so, updates
to the data state are always reflected in the TCB even if the BMT root is not up-to-date. Unfortunately,
such a scheme can create a cascading effect; loading the parent of an eviction and/or writeback target may
trigger another eviction.

2.5.1 Data Structures for Integrity Trees

Standard Merkle Tree One possible counter integrity scheme maintains a subtree of the Merkle tree
for secure memory that protects the entire memory state. This includes both the state of memory and of
encryption counters [87]. In such a scheme, fetching data from the secure memory entails authenticating
both the encryption counter and data against the Merkle tree. Once the integrity of the encryption counter
is verified, the MEE can decrypt the data prior to returning the plain-text to the processor. This procedure
guarantees the integrity of the data and encryption counters by directly authenticating them against the
root of trust (i.e., the Merkle tree root) stored in trusted hardware (an on-chip register) in the MEE.

Bonsai Merkle Tree Using a standard Merkle tree means that each fetch for application data requires two
authentications (the data state and the encryption counter state). This entails fetching two paths through
the integrity tree, which imposes a latency penalty and constrains the bandwidth available in a memory
device. Such is the motivation for a Bonsai Merkle Tree (BMT) [217].

In a BMT, encryption counters act as the basis of the integrity tree, and encrypted data has its integrity
protected by MACs that are distinct from the integrity tree (which still use encryption counters in the
computation). Inner nodes in the BMT are the concatenated 8-byte HMACs of their associated children.
The major-minor counters from split-counter CME are the leaves, each of which is 64-bytes. The HMAC
of these values are computed and stored as the parent node in the BMT. Seeing as the produced HMAC
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is 8-bytes, the concatenated HMACs of eight major-minor counters comprise the parent node. That is, the
BMT is 8-ary. To perform an authentication using a BMT, the encryption counter is fetched and has its
integrity authenticated by the Merkle tree. In parallel, the encrypted data has its integrity authenticated by
its associated MAC. If the MAC authenticates the data, then the data’s integrity can be indirectly guaranteed
so long as the encryption counter hasn’t been corrupted.

The insight of this approach is that the integrity of the plain-text data is indirectly protected by the BMT.
If the plain-text data produced from the encryption counter is authenticated by the MAC, then it must be the
case that neither the data nor the encryption counter was tampered. As such, authenticating data requires
fetching the (untrusted) encryption counter to decrypt the data; if the Merkle tree state authenticates the
plain-text, then it is safe to respond to the processor. Furthermore, this scheme couples the role of the
encryption counters with the integrity authentication protocol. Note, MAC collisions for the same data can
occur in this scheme if the encryption counters overflow as the basis for the MAC computation is consistent
in both states, but this only happens after 271 accesses by using split-counter mode encryption.

Trees of Counters Authenticating encryption counters in a BMT requires extensive HMAC computation.
Each level of the integrity tree is composed of HMACs of its children, so the authentication of a node at
any level requires full MAC computation. These computations can be expensive, and performing multiple
authentications in parallel requires complex logic [57, 56]3.

On the other hand, a parallel authentication tree (PAT) [97] is a tree of counters (nonces) and hashes
rather than just hashes. In particular, a PAT node consists of a MAC and a series of counters (nonces)
associated with its children. The MAC value in a node is computed from the associated nonce value. Much
like a BMT, a PAT uses encryption counters as its basis. Thus, when an encryption counter is updated, the
associated nonce is updated in the parent node. This construction of nodes creates a dependence in MAC
computation between a child node and its parent, which allows for authentication to occur against the root
of the tree and the global nonce. Similarly, a tamper-evident counter tree (TEC-Tree) [75] describes a tree
of counters in which tree nodes are encrypted with the trusted root nonce. As such, authenticating data
with such a scheme entails decrypting the node prior to comparing the tag against the state of the payload.
The data structure for a tree of counters is portrayed in Fig. 2.10.

The motivation for the PAT organization is to simplify the procedure of parallel updates to the integrity
tree. In order to parallelize updates in the BMT, complex logic manages on-chip logs of pending authen-
tications in the MEE before and after the HMAC of the node is computed. On the other hand, parallel
updates in the PAT are trivial: two nonces and the associated MAC in a node can be updated and computed
concurrently. So long as the updates are visible to all updating parties, any computation of the MAC value
will be correct.

2.5.2 Tree Updates with Metadata Caches

To authenticate the state of data, the root of trust must be kept consistent with the state of the data. Any
update to the data state must similarly update the metadata state and the root of trust. However, doing

3The intuition for how to perform parallel authentication with a tree of hashes (i.e., standard Merkle tree or BMT) is similar
to that of a miss status holding register (MSHR) in a cache [136, 260]. Pending authentications and updates to the integrity
tree state need to be maintained in an on-chip log. Whenever a new authentication or update is requested, this on-chip
state must be checked first such that the two requests can be handled by the same fetch and hash computation. If two
updates to the same node are detected in parallel, the second one completes the update for the rest of the tree branch.
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so can result in a high volume of metadata accesses. As such, prior literature has proposed both eager
and lazy schemes to update the trusted state. In a BMT, updates to the state of the data entail updating
the encryption counter. Consequently, the hashes of the encryption counters (and the other hashes in the
leaf-to-root path through the BMT) will change. In a tree of counters, the nonces in inner nodes associated
with the updated child must be incremented. This requires recomputing the MAC of each of the nodes
whose nonces are updated.

Eager Update One possible scheme would be to eagerly update the root of the integrity tree any time
the data state is updated. All nodes in the leaf-to-root path would be updated on every update to the data
state. Seeing as the root is updated, this scheme ensures that the trusted data and metadata state is always
entirely consistent with the untrusted state.

This requires updating the leaf-to-root path atomically. That is, all updates to the path must appear at
the same time to ensure that data races for the metadata state do not occur. Typically, this is implemented
in the memory controller by treating the write-pending queue (WPQ) as a log in which modifications are
flushed from the MEE atomically. Changes to the metadata state are placed in the WPQ upon update, but
they are not flushed to the memory/cache state until a “ready bit” is set. This allows all metadata values
(i.e., new hashes in a BMT or nonce/MAC values in a counter tree) to be computed by the MEE with the
requisite engines without worrying about the atomicity of the computations themselves.

Lazy Update Eagerly updating the integrity tree root demands a significant number of requests to the
memory system. Each node update requires a write to the system for the whole leaf-to-root path, and this
can put a significant strain on the available device bandwidth. To account for this, a MEE may implement
a lazy integrity tree update scheme.

Figure 2.11: Propagation of lazy updates in the metadata cache
that triggers cascading update effect. Note, the original update
will still need to update G after each of these changes as a trusted
value still hasn’t been updated.

Instead of updating the tree root on
every data update, a lazy update scheme
only updates the path from the leaf to-
wards the root up until the first meta-
data cache hit. In doing so, the first ac-
cessed trusted state for authentication is
kept consistent with the state of the un-
trusted state of the data. If some dirt-
ied metadata is later removed from the
trusted state (i.e., evicted from the meta-
data cache), then the updates to that
state must be propagated upwards in par-
allel with the eviction so that the trusted
state is still kept consistent with the state
of the data.

Note, this approach to updating the
integrity tree comes with two key limita-
tions: 1⃝ knowing which nodes are in the
metadata cache requires additional MEE complexity to track to metadata state prior to update, and 2⃝
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Figure 2.12: Benefit of fetching integrity tree nodes upon detected metadata cache miss.

propagating changes upwards can result in cascading evictions from the metadata cache. To expand on
2⃝, Fig. 2.11 shows how such a cascading effect can occur. When a node is evicted from the cache and its
parent is not in the cache, the parent node must be fetched and placed into the cache. In doing so, another
node may be evicted from the cache and the process repeats. In the worst case, lazily propagating changes
upwards can evict and replace the entire metadata cache state.

There are two potential strategies to propagate these changes upwards towards the integrity tree root.
One option is to propagate these changes up to the next trusted value (i.e., a parent node in the metadata
cache). Alternatively, propagated changes may be eagerly applied up to the root. Given the implementation
difficulties of lazy update propagation, any eagerly updates to the integrity tree state simplify the MEE
logic.

2.5.3 Integrity Tree Traversal

To authenticate data in an untrusted memory, the metadata associated with the data is fetched and used by
the MEE to verify its state. The MEE will fetch nodes from the leaves towards the root up to the first trusted
value. This is denoted by the first hit in the metadata cache or by the integrity tree root. This procedure
is depicted in Fig. 2.12, which also highlights the potential performance benefit relative to waiting on the
full response from the initial request. Upon detecting a miss in the metadata cache, the request for the next
node in the integrity tree is created. Note, this is possible because the integrity tree is not pointer-chasing
by default. The parent node of any child can be found by a computation on the address of the data.

This traversal strategy is inherently lazy in nature [73]. With that said, there is a key distinction in
the complexity of lazily traversing the tree as compared to updating the tree. Updating the tree requires
knowledge of what is in the cache state before the request for the node is made whereas fetching integrity
tree nodes lazily only occurs after detecting a miss in the cache state. While small, this distinction makes
the resulting logic much simpler.

2.5.4 Pending Results: Integrity Tree Performance

1. encryption with MACs vs MT vs BMT
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2. overhead of caching MACs (+ cache size analysis)

3. tree arity study

4. lazy versus eager path fetch

5. cache size sensitivity

2.5.5 State of the Art

The integrity tree is the primary source of performance overhead in secure memory. As such, its optimization
has been the source of robust study.

Cache Block Utility Similar to encryption, several prior works have considered increasing the density of
integrity trees to improve metadata cache utilization. These approaches will similarly increase the density of
the integrity tree as encryption counters serve as the basis for integrity tree leaves. VAULT [251] proposes
increasing the arity of an integrity tree closer to the root to reduce the global effective height fo the tree.
Similarly, seeing as tree size is a function of memory size, CLFSIR [252] has proposed integrity trees for
sub-regions of the address space.

In the event that a path is not in the metadata cache, alternative approaches need to optimize the path to
authenticate some data. ASSURE [209] proposes maintaining a dynamic, fast subtree to so that frequently
accessed data can be authenticated against a subtree. Bo-tree [278] describes a small external tree that can
protect a small percentage of frequently accessed data. It achieves this by modifying the leaf state to denote
whether that data is to be authenticated against the fast or slow tree, and dynamically pages metadata in
and out of the fast subtree as data becomes more frequently accessed.

Memory Hardware Co-Design Seeing as the MEE extends the memory controller logic, several works
have considered co-designing integrity tree protocols with memory controller procedures. For instance, the
memory controller is tasked with deploying logic for error correction codes (ECC). Seeing as ECC attempts
to detect corruption, SYNERGY [220] proposed using these bits as a MAC so as to avoid having to also
maintain an HMAC as metadata. Such an approach led to several similar follow on works [244, 297, 66, 64,
207].

Emerging memory technologies, such as non-volatile memories (NVMs), implement wear-leveling as an
additional (non-security) metadata field to improve device lifetime. ACME [247] leverages this notion to
reduce the likelihood that an encryption counter will overflow, which allows for more aggressive reductions
in bits for encryption counters. COVERT [249] and ASSET [248] build on top of this work to build such
primitives. ExtraCC [49] combines the co-design of ECC, wear leveling, and the integrity tree for further
optimization.

Several works have explored integrating speculation into the authentication procedure. PoisonIvy [146]
describes a scheme in which the integrity tree authentication occurs off of the critical path of returning the
data to the processor. If a hash mismatch is later found, a retroactive hardware panic is thrown before
the execution can advance too far ahead. Several other works [85, 263, 230, 275] all similarly propose
some speculative pre-computation on the MAC, tree path, or encrypted data to allow authentication to
probabilistically remove computation off of the critical path of a data fetch.
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To expand the likelihood of finding metadata on-chip, prior literature has explored improved caching
schemes for security metadata in the metadata cache. In particular, MAPS [145] demonstrated that some
security metadata exhibits irregular access patterns with long periods between reuse, but that it still exhibits
locality. As such, HMT [225] and CTR+ [224] create hybrid caching protocols aware of this access pattern.
Furthermore, Wang, et al. [280] propose a scheme in which the LLC can serve as a second level cache for the
metadata cache to capture evicted encryption counters.

Fast Path Integrity Trees Seeing as authentication against the integrity tree is the primary performance
bottleneck of secure memory, prior works have considered reducing integrity tree path lengths. While meta-
data caches achieve this, all associated performance benefits are closely tied to the cache utilization. An
alternative approach would be to intentionally maintain intermediate nodes of the integrity tree as interme-
diate roots of trust. For example, ASSURE [209] is a protocol in which a single fast subtree is maintained in
addition to the true integrity tree root. If the region in the fast subtree domain is accessed frequently, many
authentications will not need to be performed up to the global root. Bonsai Merkle Forest [80] describes a
protocol in which a set of subtree roots is determined dynamically at runtime. It does so by determining
if a current subtree root is hot (in which that subtree root is moved towards the leaves) or cold (when it
is moved upwards towards the root). Bo-tree [278] describes a protocol in which a small, auxiliary tree is
maintained towards which data may dynamically be redirected.

Alternatively, the shape of the integrity tree itself may be skewed such that frequently accessed data
has shorter authentication paths. Szefer, et al [250] propose a scheme in which the integrity tree shape is
statically skewed. If software is aware of this architecture, the application or operating system can then
prioritize allocation of frequently accessed data to these physical addresses. Several alternative schemes have
proposed dynamically restructuring the integrity tree shape at runtime [270, 272, 271, 268, 178, 269, 177].
These works typically target embedded devices, where the memory size is small enough that the restructuring
operations will not become the runtime bottleneck.

Avoiding Integrity Trees Instead of optimizing the integrity tree, some prior work have sought to op-
timize secure memory by avoiding the integrity tree altogether. Instead, a memory device may maintain a
MAC along with data in memory to ensure its integrity to protect stored data at rest. Then, the device may
develop an authenticated channel to a processor to ensure data is secured while in transit.

This approach typically considers profiling memory attacks and add defenses for these attacks. In-
visiMem [4] describes the time access patterns to leak data from memory and puts mechanisms in place
to defend against them. The motivation for this approach is defending against correlation attacks between
consistent encrypted data states for far memory. In particular, this work proposes updating the encryption
counter on memory reads as well as writes to eliminate replay attacks. SecDDR [76] defends against attacks
that originate from the memory bus, so a replay-protected bus is sufficient to defend against memory-based
replay attacks. To achieve this protection, SecDRR describes a protocol in which the memory controller and
memory device both maintain a MAC of the data state.

As described in this chapter, memory devices are subject to a variety of corruption mechanisms. Sec. 2.2
shows how even relatively restricted attack surfaces can be exploited to perform powerful attacks. An
integrity tree provides more robust protections to detect arbitrary corruption. As a result, the work in this
dissertation improves integrity tree-based secure memory protocols.



Chapter 3

Cordelia: Using Huffmanized Merkle
Trees for Scalable Secure Memory

3.1 Introduction
As demonstrated in the Sec. 2.3.2, secure memory comes at a steep performance cost as a byproduct of
maintaining metadata. To optimize this protocol, state-of-the-art proposals and commodity secure memory
hardware alike integrate a metadata cache [87, 145, 146, 13, 125] for recently accessed metadata. The benefits
of this cache are twofold: 1⃝ metadata can be fetched at lower latency than going to memory, and 2⃝ the
metadata cache resides on-chip, so cached values are trusted. That is, when authenticating some data, BMT
nodes need to be fetched from the leaves up to the first metadata cache hit (or the BMT root if none of the
path is in the cache). This chapter emphasizes the point that the benefit of 2⃝ is significant.

Unfortunately, secure memory has been deemed too slow for commodity processors. In the white paper
promoting SGXv2, Intel notes: “Numerous studies have shown that workloads that make significant use of
SGX memory have their performance impacted. The reason for this is the additional bandwidth required to
fetch the various levels of the integrity tree protecting SGX memory” [125]. Given the benefits promised by
the metadata cache, it would seem that hosting a larger metadata cache would resolve this issue. However,
the processor chip area is very constrained, so very little space can be allocated on-chip to the metadata
cache. In fact, it has been demonstrated that Intel SGXv1 makes use of a relatively small metadata cache
(64kB [103]), which is comparable in size to a first-level data cache. At the same time, this metadata
cache is tasked with capturing the locality of secure metadata at a memory access granularity (i.e., L3
misses, writebacks, etc). As a result, many workloads, such as machine learning (ML) and high performance
compute (HPC), are still bound by the bandwidth requirement to implement secure memory [164, 305].
This trend will only continue to worsen as applications make increasing demands of memory devices [295,
89, 65, 109], and implies that metadata caches will suffer a scalability problem due to the fixed capacity of
the cache. Furthermore, the cache’s decreased utility will lead to further secure memory-driven performance
degradation in memory-sensitive workloads.

29
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Figure 3.1: Bandwidth overhead of secure memory relative to a
non-secure memory based on metadata cache size.

Fig. 3.1 demonstrates that the ben-
efit of the metadata cache is signifi-
cant. This analysis demonstrates the
additional memory bandwidth consumed
by secure memory compared to a non-
secure memory with various metadata
cache sizes (full evaluation specs are de-
tailed in Sec. 3.4). Doing so models vary-
ing degrees of metadata cache resource
constraint. When reducing the metadata
cache from 64kB to 16kB, the average
memory bandwidth consumed increases
20%. Conversely, increasing the metadata cache from 64kB to 256kB reduces the bandwidth overhead by
13%. This indicates that the benefits promised by the metadata cache are closely coupled with how efficiently
it is utilized. In addition, the limited, fixed metadata cache size will suffer a scalability problem as workloads
continue to become more memory intensive. Our approach, Cordelia, achieves comparable bandwidth to an
unconstrained metadata cache.

In order to make secure memory suitable for commodity deployment, it is imperative to reduce the
bandwidth requirements needed to implement secure memory. This chapter aims to achieve this by reducing
the number of BMT accesses (and thus increasing the benefit of 2⃝ for the metadata cache listed above)
for memory-intensive workload. The approach works by reducing the leaf-to-root path length for frequently
accessed data. This means that, even if relevant BMT nodes are not in the metadata cache, authenticating
data against the BMT root does not require as many metadata accesses.

The goal of this chapter is to enhance optimization 2⃝ of using a metadata cache. The metadata cache
reduces BMT accesses for recently used metadata while the data structure reduces accesses for frequently
accessed metadata, even when these addresses are not captured by temporal or spatial locality.

To do so, this chapter works from the key insight that the BMT faces performance limitations by not
considering application behavior. The approach is to consider application behavior in the design of the data
structure so that more frequently accessed data requires less work to authenticate. In particular, this chapter
proposes re-organizing the tree such that frequently accessed addresses have shorter BMT leaf-to-root paths
by leveraging Huffman trees [112], which maintain the provably shortest leaf-to-root path relative to access
frequency. As a result, the optimization for shorter leaf-to-root authentication paths will be enforced by
the data structure regardless of the cache utilization. Such an approach achieves benefit 2⃝ of the metadata
cache without being subject to the limitations of fixed cache size.

Cordelia achieves adaptability by using the Faller-Gallager-Knuth (FGK) [77, 84, 134, 273] adaptable
Huffman tree algorithm. This design decision is important, as using the construction method in [112] works
best with a priori knowledge of global access frequencies and that these access frequencies would be static,
which does not apply to the secure memory problem. For this reason, Cordelia adapts the FGK and BMT
structures to be safely integrated with one another. Consequently, Cordelia improves performance at runtime
by reducing the number of memory accesses associated with frequently accessed addresses. This alleviates
the bandwidth requirement needed for secure memory.

The contributions of this chapter are as follows:
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1. We propose Cordelia, a secure memory architecture whose integrity tree is structured as a dynamic,
Huffmanized Merkle Tree to reduce metadata accesses in secure memory.

2. We adapt the classical FGK dynamic Huffman tree algorithm to enable dynamic restructuring of the
BMT.

3. Our evaluation demonstrates the scalability limitations of the metadata cache and shows that Cordelia
benefits performance by 22% relative to the state-of-the-art and 31% relative to commodity secure
memory on average and by up to 55% for HPC workloads.

3.2 Background and Related Work
Much of the relevant background concerning secure memory is covered in Chapter 2. This section in this
chapter primarily concerns the relevant background on Huffman trees and details the relevant prior literature

Figure 3.2: Example for Huffman encoding. A Huffman tree
is constructed from the relative frequency of each character.
To encode A, the tree is traversed left twice so the resulting
code is 00. B is encoded as 010, C as 011, and D as 1.

in this space.

3.2.1 Huffman Trees

A Huffman tree [112] is a binary tree structure
where path lengths are proportional to the fre-
quency with which leaves are accessed. The
more frequently that a node is accessed, the
closer it will be to the root. If one particular
leaf node is accessed more frequently, then it
will have a provably equivalently shorter path
from leaf to root the shorter its path through
the tree, which minimizes the average path
length through the tree relative to access rate.

The benefits of Huffman trees have been
studied in a variety of contexts. Huffman trees
are often applied to encoding information [182,
273, 134, 84, 104]. In particular, a Huffman
encoding scheme is the provably minimal information required to represent data relative to the frequency
with which the tokens comprising that data are used. This may be useful when attempting to perform image
compression [237], energy/power reduction [169, 193], DNA compression [196], etc. To do so, a Huffman
code for some data is derived by constructing a Huffman tree over some set of tokens comprising the leaves of
the tree and concatenating the code of the tokens. The code of token is derived by finding its path through
the tree from the root to the leaves: store 0 when going left and 1 when going right. The process is depicted
in Fig. 3.2.

The tree shape of this Huffman tree algorithm is a function of its construction. Therefore, if the tree
shape ever needs to change, the tree must be reconstructed. This is a relatively safe assumption in certain
contexts where the distributions are statically known; for example, the relative usage of characters in an
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Listing 3.1: The construction of a Huffman tree.

1 // T is a declared/defined type
2 // Node is a declared/defined type that maintains a data field,
3 // a frequency count, and a reference to its left/right children
4 priorty_queue<T> pq;
5 set<Node<T>> leaves;
6
7 // sorted PQ of leaves from least to greatest
8 for (leaf: leaves) {
9 pq.push(leaf);
10 }
11
12 /* Huffman tree construction */
13 while (pq.size() > 1) {
14 // pop the two least frequently accessed nodes from the queue
15 Node<T> n1 = pq.pop();
16 Node<T> n2 = pq.pop();
17
18 // create a parent node from the children
19 Node<T> parent = { n1.getFrequency() + n2.getFrequency() };
20 parent.left, parent.right = n1, n2;
21
22 // add the new parent to the priority queue
23 pq.push(parent);
24 }
25
26 Node<T> huffman_tree_root = pq.pop();

alphabet are relatively stable when encoding strings of language. However, adapting the tree shape requires
total tree reconstruction if the context isn’t known in advance.

Consider applying a Huffman tree to secure memory. As established in Chapter 2, the integrity tree is
the bottleneck of a secure memory due to the large number of fetches. Seeing as the benefits of Huffman
coding are a function of short path lengths, performance benefits may follow applying this construction
to an integrity tree. As a result, Huffman trees provide an interesting framework for reconsidering BMT
structures for secure memory, but there are several challenges to directly applying the encoding procedure
in [112] to secure memory. For one, a Huffman tree assumes that the access frequencies are globally known
a priori and static throughout the execution of an application. Such an assumption is unreasonable in the
context of memory hardware: applications are highly dynamic in their behavior and memory devices operate
agnostic to the behavior of any individual application. To counteract this, one could imagine reconstructing
the Huffman tree from time to time. Unfortunately, the Θ(n log n) cost to construct a Huffman tree is an
arduous operation when n refers to gigabytes or terabytes of physical addresses.

Given this observation, this dissertation considers alternative constructions of Huffman trees. In partic-
ular, it focuses on adaptive protocols, such as the FGK algorithm [77, 84, 134, 273]. The FGK algorithm is
based on the characterization of a Huffman tree (described in [134, 273]), in which nodes are strategically
organized such that weights are sorted from least to greatest as nodes are scanned from the bottom left to
the right and upwards (i.e., →, ↑, →, etc). Given this configuration, incrementing and adjusting the shape of
the tree is achieved with significantly less work per operation as the algorithm takes into account the shape
of the prior distribution. The algorithm is described formally by Vitter in [273].

For clarity, the update protocol is overviewed with an example, highlighted in Fig. 3.3. To update
(increment) the weight of a leaf node, FGK calls an update operation that applies the following iterative
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modifications to the tree to retain it as a Huffman tree: starting with the leaf as the current node (i.e.,
the red dotted node in Fig. 3.3a), the subtree of the current node N is “interchanged” with the subtree of
the highest “ordered” node of the same weight (i.e., the node that is furthest “up and to the right” of the
same frequency, shown in Fig. 3.3b). After interchanging, the weight of node N is incremented. Notice that,
because N was the “highest order node” of its frequency prior to incrementing, the arrangement of nodes by
frequency is preserved. Then, the process is repeated with the parent of node N becoming the new current
node (i.e., Fig. 3.3c). The procedure stops after incrementing the root’s weight. Each interchange (which
trivially maintains the above Huffman tree characterization) allows the subsequent increment to operate on
the highest ordered node of its weight so the increment does not violate the characterization, and thus the
resulting tree is a Huffman tree.

Although the FGK adaptive algorithm provides a strong basis to reimagine the shape of a BMT, doing
so naïvely faces several key pitfalls that are addressed in this chapter. For one, the original conception of
FGK describes a protocol in which the tree shape adapts to any change to the distribution of accesses. In the
context of secure memory, this means any memory access could result in tree reconstruction. Furthermore,
the FGK algorithm is a fundamentally sequential algorithm, and applying sequential algorithms to parallel
environments (such as memory devices) can lead to consistency violations. Finally, swapping pointers and
interchanging nodes may lead to replayable states, which presents a new attack surface for malicious adver-
saries. Sec. 3.3 describes the explicit steps that Cordelia takes to address these pitfalls in applying the FGK
algorithm to secure memory.

3.2.2 Related Work

A few works have looked into Huffmanized Merkle trees for secure memory [309, 177, 178, 271]. Unfortu-
nately, the feasibility of applying these works to full memory protection of systems outside the edge (i.e.,
IoT or FPGA) has been limited in practice for a variety of reasons. These devices tend to have smaller
capacity, and the associated integrity tree is small. This work targets secure memory for commodity devices
with memories with at least gigabytes of capacity and large integrity trees as a result.

FAST [309] describes a statically Huffmanized Merkle tree for secure FPGA memory. In particular, this
work proposes a binary Merkle tree in which some skew can be generated. The work provides an insight into
how the tree must be organized in order to have a dynamic shape by classifying nodes as encryption counters
(i.e., BMT leaves), Merkle tree leaves (i.e., parents of encryption counters in a BMT), and inner tree nodes.
Merkle tree nodes need to maintain a reference to the parent node. The approach uses a modified version of
the Huffman tree construction proposed in [112], which limits the dynamism of the approach. Furthermore,

Figure 3.3: Sample call to update in an FGK Huffman tree.
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the modifications to the construction fell its theoretical optimality.
Millar, et al [178, 177] implements several variants of the Pigeon and Begnio dynamic Huffman tree [202].

To do so, a reference needs to be maintained to parent nodes, uncle nodes, and sibling nodes in the node.
This increases the memory overhead of the integrity tree structure by 3×. However, this work does not
consider the implications of parallel updates to the tree shape and authentications. Without this safety
mechanism in place, the hashes in the authentication path may not correspond to the current child node,
which would lead to a hash mismatch. Furthermore, the analysis in this work indicates that such an approach
hurts performance relative to static Merkle trees for secure memory.

Vig, et al [267, 271, 268] proposes using the dynamic Huffman construction scheme proposed by Pigeon
and Bengio [202] as the basis of the Merkle tree for secure memory. In this scheme, the frequency of access
is maintained in an look-up table stored in memory. By doing so, frequency counters are not maintained
in the integrity tree nodes to ensure that maximal space in the node is allocated for security metadata.
The scheme dynamically updates the tree shape on every memory access. Unfortunately, the binary nature
of the tree means that the BMT will not be as dense and metadata cache performance will degrade as a
result. Additionally, in order to safely update the tree shape, authentications are blocked while updates
occur. Furthermore, the frequency of tree shape update quickly becomes the bottleneck in performance.
CaDST [269] is a follow on work from Vig, et al that shows that the benefit of using Huffman trees augments
the benefits of a metadata cache, and using a metadata cache drives significant performance benefits in
authentication.

This chapter presents Cordelia, a Huffmanized Merkle Tree for secure memory that addresses the lim-
itations of the prior work. Cordelia explicitly addresses each of these challenges, making it practical for
deployment. Furthermore, Cordelia also looks into the scalability of its approach by considering various
schemes for incrementing counters and freezing levels out of the Huffman region.

3.3 Cordelia
Thsi section describes the design of Cordelia, a Huffmanized Merkle Tree for secure memory. To implement
such an approach, Cordelia applies a modified FGK adaptive Huffman tree algorithm [273, 77, 84, 134]
to the BMT in secure memory. In addition to lightweight adaptations to implement an 8-ary (standard
for secure memory) FGK tree, this work observes three non-trivial design features, each of which imposes
implementation and/or security challenges.

Observation 1: Integrity tree nodes need to maintain a reference to their parent to implement dynami-
cally adaptable paths.

In order to account for this observation, Cordelia must modify the layout of tree nodes in order to store a
reference to their parent. Furthermore, the reference should not provide a new attack surface; any corruption
of the reference should be detectable by the authentication procedure. Sec. 3.3.1 discusses how, if done
naïvely, such an attack is possible and how Cordelia is resilient to this attack.

Observation 2: Implementing a Huffman tree requires additional ordering metadata, whose storage
must also be considered.
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It is insufficient to store frequency weights in tree nodes, as doing so would occupy space that could otherwise
be used to store HMACs or counters. Furthermore, frequency counters could be subject to overflow in the
original conception of FGK. Such a behavior was an out-of-scope consideration in the theoretical instanti-
ation, but could have detrimental performance impacts in real hardware deployment. To account for this,
Cordelia proposes a new mechanism to track access frequency counters and Huffman weights that explicitly
addresses these pitfalls. Sec. 3.3.1 and Sec. 3.3.2 describe how this is achieved in Cordelia.

Observation 3: The FGK algorithm is a sequential algorithm, but memory devices are highly parallel.

Cordelia implements mechanisms to ensure that the tree shape can safely change without paths changing mid-
authentication. Furthermore, this safety mechanism allows for parallel memory accesses and authentications
in the device while still having an adaptive tree shape. Sec. 3.3.3 describes how Cordelia achieves this.

3.3.1 Pointer-Chasing Tree Nodes

This section first describes how Cordelia accounts for the challenges imposed by Observation 1. In prior
BMT-based secure memory schemes, the address of the data and metadata is used to compute the address
of the respective encryption counter and parent node [217, 59, 93]. However, in order to have dynamic
paths, BMT nodes in Cordelia need to maintain an explicit reference to their parent, as the parent node may
change in calls to update. The MEE still finds the encryption counter for some data using its address, but
all parent nodes above the encryption counters are found by dereferencing a pointer. As such, the parent
of all tree nodes must be stored alongside the node’s data (i.e., pointer-chasing). In order to make space to
store pointers in BMT nodes, space must be “borrowed” from elsewhere in the node to remain word-aligned.

Figure 3.4: Layout of counters and inner nodes in
BMTs to make space for 32 bit tag and 32 bit pointer
in Cordelia.

In Fig. 3.4 highlights how space is allocated to
BMT nodes in Cordelia. Recall that per-page en-
cryption counters are composed of sixty-four 7-bit
minor counters and one 8-byte major counter in
counter-mode encryption. Cordelia’s nodes need 8
bytes of space and makes this space by reducing
the minor counters to 6 bits. To account for this
change, Cordelia assumes the most significant bit of
this value to be 0 in the minor counter field of the
AES engine input for encryption/decryption. The
64 bits that are freed as a result of this change are
used to store the encryption counter’s parent pointer
field (see Fig. 3.4). Inner BMT nodes in Cordelia are composed of eight 7-byte hashes to make space for the
parent pointer. These structural modifications are intentionally lightweight by design in accordance with
Observation 2.

Note that the parent reference in Cordelia nodes must be tagged with the original node index in the
integrity tree to remain robust against replay attacks. To highlight how such an attack could occur, suppose
two different nodes in the tree have identical metadata states, as demonstrated in the left side of Fig. 3.5.
Such a scenario implies that interchanging these two different metadata values could be legitimately veri-
fied by the same parent. This primitive is dangerous; if different metadata values can be authenticated by
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the same parent node, the MEE cannot distinguish between legitimate, uncorrupted metadata from mali-
ciously corrupted values. Thus, Cordelia tags the pointers with the original value to ensure that similar
data always has a unique identifier per tree node. This is demonstrated on the right side of Fig. 3.5.

Figure 3.5: Cordelia tags pointers with a unique ID
to ensure different nodes with the same value produce
different values.

3.3.2 Frequency Tracking

Cordelia maintains access frequencies in an auxil-
iary structure outside of the central BMT. As con-
veyed in Observation 2, storing frequency counters
in BMT nodes themselves would further restrict
the space per node allocated to security metadata.
Thus, only the parent pointer described in Sec. 3.3.1
comes at the expense of additional security meta-
data requirements. Furthermore, making this de-
sign decision naturally allows Cordelia to relax the
precise definition of access frequency to the rate at
which some node is accessed as a function of n.
Sec. 3.3.3 describes the mechanism of this below, and overview the benefits of this decision.

Figure 3.6: The organization of FGK frequency track-
ing structures in Cordelia.

The organization for the proposed scheme is pre-
sented in Fig. 3.6. In the implementation of FGK,
a call to update (i.e., to reorganize the tree shape)
is called whenever a leaf has been accessed n times.
Thus, for each leaf, Cordelia maintains a set of log2 n
bit frequency counters that, on overflow, dictate
when to call the update procedure. In addition to
these counters, these frequency counters also main-
tain a reference to an auxiliary structure that main-
tains the weight classes for all nodes in the Huffman
tree. These weights are tracked in a “weight class
list,” where elements in the list maintain: 1⃝ the
weight as a 64-bit counter; 2⃝ a reference to the
highest order tree node of that weight; and 3⃝ a ref-
erence to the next element of the weight class list.

In Cordelia, calls to FGK update entail perform-
ing interchanges to update the tree path, and are consistent with the protocol in [134], but incrementing
node weights is achieved through the weight class list. In particular, incrementing a node with order o from
weight w to w+1 means adjusting the reference to weight w to o− 1. If w+1 is not currently in the weight
class list, then an entry needs to be allocated and added to the list. Conversely, if o was the only member
of w, then w is removed from the weight class list and can later be repurposed for new weight classes.

Although the number of possible weights is infinite, this work observes that the number of active weights
is equal to the number of nodes in the Huffman tree. As such, the amount of space to reserve for the weight
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Listing 3.2: Management of free_list for frequency weights.

1 struct Node<T> {
2 T data;
3 Node<T> *next;
4 };
5
6 Node<T> head;
7 Node<T> tail;
8
9 Node<T> allocate() {
10 Node<T> n = head;
11 head = head->next; // does not require a memory operation
12 return n;
13 }
14
15 void reclaim(Node<T> n) {
16 // note: we don't need to invalidate n's next pointer
17 tail->next = n; // requires memory operation
18 tail = tail->next; // does not require a memory operation
19 }

class list is proportional to the tree size. Sec. 3.3.4 describes a worst case mitigation mechanism for this
behavior.

3.3.3 Concurrency for Secure FGK

To achieve this, Cordelia implements a modified reader-writer lock (RW lock) [111] in the MEE logic as a
concurrency control mechanism. RW locking allows for multiple readers to access the shared state in parallel
whereas a writer must be the sole actor that can access the state. As such, updates to shared state are always
viewed consistently. In Cordelia, normal memory requests (reads that need authentications and writes that
require metadata updates) are considered “readers” because they maintain the BMT shape. On the other
hand, requests that implement the FGK protocol are considered “writers” as they modify the tree shape.

Figure 3.7: Huffman and non-Huffman regions of a tree with
1 frozen level. Red nodes are “dynamic” and blue nodes are
“static.”

As depicted in Fig. 3.7, the lock is
implemented as two queues, for “active”
and “pending” requests, and an “update”
flag. If the FGK engine decides to re-
structure the tree shape, it sets the “up-
date” flag. When this flag is set, in-
coming memory requests from the proces-
sor are buffered in the “pending” queue.
Once the last request is processed from
the “active” queue, the FGK engine is-
sues the requests to update the tree
pointers and restructure its shape. Note,
the FGK metadata state can be fetched
and the updated state can be computed
while waiting for the “active” queue to
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drain. After the FGK updates have re-
sponded, the processor requests can be
moved from the “pending” queue to the “active” queue, and the “update” flag can be cleared so that normal
execution can resume.

Unfortunately, using this concurrency control can quickly degrade performance. If every memory access
calls update, then utilizing the RW lock turns Cordelia into a blocking memory. To address this, Cordelia
relaxes the notion of “access frequency” as described in Sec. 3.3.2. Relaxing this definition has the effect of
fewer memory accesses triggering the RW lock to block authentications (where the application advances).
Consequently, the memory device is able to fetch and authenticate several data requests in parallel. Spending
time with the “update” flag set can still lead to pauses in application fetches; however, when using 64 as a
default value for n in practice, the typical blocking case only incurs approximately 10-25 memory accesses to
re-balance the tree and that the cost of restructuring the shape is amortized by the benefit of fewer metadata
accesses. In the worst case, however, the amount of time restructuring the tree is a function of the longest
path of Huffman tree nodes. Mitigation strategies of the worst-case behavior are discussed in Sec. 3.3.4.

3.3.4 Worst Case and Spatial Overhead Mitigation

Figure 3.8: Huffman and non-Huffman regions of the
BMT with 1 frozen level. Red nodes are “dynamic”
and blue nodes are “static.”

Both the size of Cordelia’s auxiliary structures and
the worst case bound for time spent blocking is
bound by the number of nodes in the Huffman tree.
To mitigate this, this work proposes a scheme in
which it relaxes the granularity with which Cordelia
tracks access frequencies by “freezing levels.” That
is, this work defines various regions of the tree as be-
ing “static” and other regions as “dynamic.” Fig. 3.8
depicts the organization of these regions. The size
of the static region is configurable and can be set by
the end-user in the BIOS. This approach is inspired
by Awad, et al [23], which proposes a similar tree
partitioning mechanism for crash consistency mod-
els.

The space that Cordelia reserves for frequency
counters is a function of the number of Huffman
leaves in the tree. Given the fan-out property of the
8-ary BMT, “freezing” n lowest levels of the BMT
out of the Huffman region decreases the number of Huffman nodes by approximately a factor of 8n. Seeing
as these are the lower levels of the Huffman tree, the number of leaves is similarly reduced by 8n. Reducing
the number of leaves means that less space needs to be reserved for the frequency counters and reducing
the number of Huffman nodes reduces the amount of space to be reserved to maintain the weight classes
(depicted in Fig. 3.6). In addition, reducing the number of Huffman nodes reduces the longest potential
path, which in turn reduces the worst case pause in execution during rebalancing. Sec. 3.4.3 details the
precise spatial overheads of Cordelia in and details the effect “freezing levels” have on this overhead.
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Table 3.1: Evaluation configuration for Cordelia evaluation.

On-Chip Configuration
Processor 4 cores, x86 ISA, out-of-order

1GHz clock, 1 thread/core
L1 cache 48kB icache, 32kB dcache

2-cycle latency, 64B/block
L2 cache 512kB, 20-cycle latency, 64B/block
L3 cache 8MB, 32-cycle latency, 64B/block

Security Configuration
BMT 8-ary tree nodes, 64-ary counters

Metadata Cache 64kB, 2-cycle latency
DDR4-based Memory Configuration

Capacity 64GB, dual channel
Latency 150ns [183], 3200 MT/s [131]

Partitioning the BMT into Huffman and non-Huffman regions implies that “Huffman” leaves essentially
serve as roots over a static subtree. That is, if Cordelia is configured with more “frozen levels,” then the
resulting tree is more balanced. Consequently, mitigating the worst case behavior does so at the expense
of the precision at which access frequencies can be tracked. In practice, however, this work observes that
less granular views of access frequency do not negatively affect Cordelia and, in some cases, actually benefit
performance. Sec. 3.4.3 discusses this in more detail.

3.4 Evaluation
In this work, Cordelia is implemented in gem5 [162] and evaluated with the hardware configuration specified
in Table 3.1. This evaluation aims to show: 1⃝ the scalability limitations of commodity secure memory
deployments (i.e., the approach used in Intel SGX [93]); 2⃝ the benefit of Cordelia relative to the state-of-
the-art; and 3⃝ a sensitivity analysis to highlight the impact of Huffman reconstruction on performance. This
is done through implementation and evaluation three prior arts for comparison: ASSURE [209], VAULT [251],
and Morphable Counters [219]. In general, reference to the “baseline” approach implies the commodity secure
memory deployment from [93]. This approach allows us to evaluate the impact of details concerning secure
memory on end-to-end application performance. This section also analyzes the spatial overhead of Cordelia
and perform a security analysis of the approach. For the purposes of the evaluation, the implementation
of the commodity secure memory deployment refers to the approach described in [93] as the “baseline”
approach.

This evaluation is performed using three types of applications: (1) high performance computing work-
loads from the SPEChpc 2021 benchmark suite [65], (2) the breadth-first search (BFS) workload from
graph500 [246] for graphs of varying sizes, and (3) a random access microbenchmark (MB), in which random
indices are accessed in a large array, to demonstrate memory intensive behavior. In using the SPEChpc
benchmarks, the architecture consists of a 2MB LLC and the “tiny” workload to demonstrate the efficacy of
the approach. This is the largest benchmark that could be simulated in gem5 given the system requirements
of the benchmark, but the LLC is shrunk to emulate the increased memory demand of the “small” workloads.
The simulated the region of interest as defined by the source in the benchmark suite. The evaluation of
graph500 is modeled off of prior work [246] by executing four iterations of BFS and turning off validation.
Finally, the MB workload pre-allocates an array, and one billion accesses are measured to random indices of
a large array as the region of interest.
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Figure 3.9: Cycles to execute the region of interest in each of the SPEChpc 2021 benchmarks. Results are
normalized to the baseline with a commodity metadata cache. Lower is better.

3.4.1 Performance

The evaluation of the end-to-end runtime of the SPEChpc 2021 benchmark suite is shown in Fig. 3.9.
The figure shows several metadata cache configurations of both the baseline secure memory protocol and
Cordelia to highlight its scalability. In particular, the evaluation entails a “large” metadata cache of 256kB
and a “small” metadata cache of 4kB in addition to the metadata cache in a commodity deployment (i.e.,
64kB [103]). By using these configurations, this evaluation demonstrates the impact of the metadata cache
on performance. That is, a smaller metadata cache demonstrates what the expected behavior should be
when the cache is more constrained by the active set of metadata.

As demonstrated by the figure, Cordelia improves performance by 17% on average across the benchmark
suite with a commodity secure memory configuration. In addition, the performance in the baseline is
particularly sensitive to metadata cache size. Under these workloads, a smaller metadata cache can lead to
performance degradation up to 14% (pot3d). On the other hand, Cordelia’s performance optimization is
agnostic to the metadata cache in these workloads. Even with a small metadata cache, Cordelia’s performance
is impacted by less than 1%. With a small metadata cache, Cordelia improves performance by 31% on average
and by up to 55% (clvleaf) relative to the baseline. Cordelia also improves performance by 26% relative to
ASSURE, 21% relative to VAULT, and by 24% relative to Morphable Counters. Cordelia is able to reduce
path lengths more than ASSURE, in which the subtree may only move horizontally. Furthermore, despite
the improved utility per metadata cache block in VAULT and Morphable Counters, Cordelia enhances the
reduced authentication path length optimization beyond the metadata cache alone.
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Figure 3.10: Breakdown of average memory accesses
per data access in each of the SPEChpc 2021 bench-
marks. Fetches described by metadata type.

The benefits of Cordelia can be attributed to the
reduced work to authenticate data. Prior work has
demonstrated that secure memory is a performance
bottleneck in memory-bound applications due to the
bandwidth requirements to fetch metadata [164]. To
demonstrate this, Fig. 3.10 shows the number of
memory fetches for an average authentication re-
quired with commodity cache sizes for each of the
SPEChpc benchmarks. These are broken down by
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the access for the application data, the authenti-
cation metadata (i.e., counter, HMAC, and BMT
nodes), and the work to restructure the Huffman
tree in Cordelia. The figure shows that, across work-
loads, BMT fetches are the majority of device ac-
cesses. Furthermore, Cordelia reduces the number of memory accesses by 14% on average across the suite
as compared to the baseline. This is despite the additional work to implement and maintain the Huffman
tree, which accounts for 8% of the total memory fetches on average. This evaluation finds that this reduc-
tion in fetches can benefit performance to the extent that these workloads are bound by memory fetches.
That is, the performance benefit is greater for workloads (such as clvleaf and pot3d) in which there is a
significant reduction in additional fetches for metadata (16% and 18%, respectively) and the application is
highly memory intensive.

To study this further, the baseline secure memory protocol is modeled with a memory-intensive random
access microbenchmark while controlling for metadata cache size. The motivation for this is to maximize the
percentage of execution that is bound by the memory system. The results are shown in Fig. 3.11 and further
highlight the benefits of Cordelia, where up to 22% performance improvement relative to a baseline protocol
with a commodity cache, and by up to 31% with a small metadata cache. The benefit of the metadata
cache decreases as the memory size increases. When performing random access to a 1GB array, a larger
cache improves performance by 10% as compared to a 3% improvement with a 4GB array. In addition, this
evaluation shows that Cordelia performs better for smaller workloads. Using the 1GB workload, Cordelia
improves performance by 21% relative to the baseline as compared to 12% in the 4GB workload. This can
be attributed to the fact that random access serves as an adversarial deployment for Cordelia, as there is
little re-use by definition. Smaller arrays imply that the resulting Huffman tree will have more skew, and
have a greater benefit on end-to-end performance as a result.

3.4.2 Metadata Cache Scalability
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Figure 3.11: Cycles to execute 1 billion accesses to
various sized arrays. Results are normalized to the
baseline with a commodity metadata cache. Lower is
better.

The results from Sec. 3.4.1 calls into question the
scalability of the metadata cache. That is, as pres-
sure on the memory device increases due to band-
width sensitivity in the application, the utilization of
the metadata cache (and the benefits that it can pro-
vide) decrease. Furthermore, HPC workloads with
larger memory footprints than could be modeled in
gem5 are likely to have a larger set of active meta-
data than can be supported in the metadata cache.

This analysis shows that a more constrained
metadata cache directly correlates to degradation
of end-to-end performance. In fact, there is a 20%
slowdown simply by using a 4kB metadata cache
as compared to a 64kB metadata cache in both
the 2GB and 4GB random access microbenchmark.
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This implies that, although certain prior literature that increases BMT density [219, 251] may help to a
point, increasing memory footprints will continue to put pressure on the metadata cache and performance
will suffer as a result.
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Figure 3.12: Normalized cycles to execute the baseline
secure memory protocol to execute a random access
microbenchmark for various metadata cache sizes.

Given the observation of limited metadata cache
scalability, the evaluation includes a sensitivity
analysis of Cordelia as compared to the baseline
secure memory protocol with respect to metadata
cache size. This analysis, compares the baseline
secure memory protocol in [93] to Cordelia. The
performance of Cordelia is normalized to the per-
formance of the baseline secure memory protocol in
Fig. 3.13 to show the relative speedup in each sce-
nario.

This evaluation shows that, in cases where the
metadata cache is constrained (i.e., smaller meta-
data cache sizes), Cordelia can have significant per-
formance benefits. For example, in both the 2GB
and 4GB random access microbenchmark, the evaluation finds that Cordelia can improve performance by as
much as 29% compared to a 4kB metadata cache while using the baseline secure memory configuration [93].
This implies that Cordelia can help recover the potential loss in performance in these constrained cases.
Beyond this, the evaluation finds that the benefit of Cordelia scales more as the size of the workload in-
creases. This is attributed to the fact that smaller metadata caches are less effective in reducing the effective
metadata required per authentication. On the other hand, Cordelia reduces metadata access requirements
in the data structure, which is agnostic to the application demands for the metadata cache.
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Figure 3.13: Cycles to execute microbenchmark for
various metadata cache sizes. Performance normalized
to baseline for equivalent cache.

The relative benefit of using Cordelia with a
small cache in the 4GB workload is greater than that
of the 1GB workload. Seeing as the utilization of a
smaller cache is worse for the bigger workload, the
relative benefit of Cordelia, a cache-agnostic proto-
col, improves by comparison. By contrast, a smaller
cache will not negatively impact performance to the
same extent in the 1GB workload.

3.4.3 Impact of Worst Case Mitiga-
tion

As described in Sec. 3.3.4, the worst case behaviors
in Cordelia are largely a function of the number of
nodes in the Huffman region of the tree. Freezing
the f lowest levels of the Huffman tree can remedy
some of these behaviors, but the impact of this decision on performance is non-trivial. In particular, freezing
the f lowest levels of the BMT out of the Huffman tree essentially trades off the precision at which Cordelia
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can track access frequencies with the spatial overhead required to perform such tracking. Surprisingly, there
can be positive implications of freezing levels on performance beyond the theoretical case.

Fig. 3.14 compares the normalized cycles to run the graph500 BFS workloads in Cordelia without a
metadata cache using different levels for f to highlight the impact of this design decision. As demonstrated
by the evaluation, increasing f can have a positive impact on performance to a point, especially for workloads
with larger memory footprints. This evaluation finds that, by reducing the number of Huffman nodes,
the amount of work for the FGK algorithm to do is reduced. That is, when applications access memory
more uniformly, the resulting Huffman tree is more balanced. Thus, increased precision does not benefit
performance in these cases. Consequently, reducing the number of Huffman nodes from Cordelia reduces the
amount of work per call to increment in the FGK algorithm. This means that Cordelia can spend a greater
percentage of time performing authentication. On the other hand, if too much precision is lost (i.e., f = 6

while performing BFS in a 2GB graph), then there can be a regression in performance as Cordelia cannot
create enough skew to benefit performance.

3.4.4 Spatial Overhead

Cordelia maintains two auxiliary structures in order to implement the FGK algorithm: 1⃝ the frequency
counters associated with each leaf and 2⃝ the list of node classes. Each of these structures requires an
explicitly reserved region of physical memory where they are stored, and their size is a function of the
number of nodes in the Huffman tree.
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Figure 3.14: Sensitivity of number of frozen levels, f ,
while performing BFS in graph500.

To implement relaxed updates in the FGK part
of the tree, Cordelia tracks how many times a partic-
ular Huffman leaf has been updated between 0 and
n, and maintains a reference to that leaf’s associated
weight class. By default, this work assumes n to be
64 (i.e., 6 bits of storage), and as described below
there are t possible weight classes where t is approx-
imately 300,000 for a 64GB memory (i.e., 19 bits of
storage). Thus, each of the 262144 frequency coun-
ters in a 64GB can be expressed as an 4-byte field,
resulting in 1MB to store the frequency counters.

Elements in the node class list maintain a refer-
ence to the highest order node in the weight class, a reference to the next greatest weight in the node class
list, and a counter to maintain the current frequency for that class. The number of elements in the weight
class list is equivalent to the number of Huffman nodes to account for the worst case (i.e., each node resides
in its own weight class). Seeing as there are approximately 300,000 Huffman nodes in a 64GB memory, this
means that each of these references can be expressed as 19-bit values. In order to ensure that elements can
be neatly word aligned, 90 bits are stored for the frequency counter. Thus, the size of each element in the
weight class list is 16-bytes, and the total size of the list is approximately 4.57MB.

As described in Sec. 3.3.4, the spatial overhead of the auxiliary structures in FGK are largely a function
of the number of Huffman leaves in the tree. By freezing the f lowest levels of the Huffman tree, Cordelia
can reduce t by a factor of 8f−1 given the 8-ary nature of the BMT. That is, merely by setting f to 1 reduces



44

the spatial overhead of Cordelia from 5.57MB to 714kB, setting f = 2 requires 90kB, etc.

3.4.5 Security Analysis

The methodology for the security analysis is based on prior secure memory literature [219, 251]. These
serve as the standard methodology in analyzing the security of this literature. In particular, the analysis
is predicated on the fact that the secure memory protocol is secure because it is highly unlikely that two
non-malicious values recursively produce colliding hashes through the BMT. This is an important primitive
as a strong cryptographic hashing algorithm is one that randomly maps any data to a hash value with
uniform probability, thereby making it impossible to compute a colliding hash value using brute force in a
reasonable amount of time. When producing an 8-byte cryptographic hash, there is a probability p that
two values will collide where p is 1

88 . In the baseline, when applying this to a BMT protecting 64GB, the
resulting tree is ten levels (i.e., there are ten of these cryptographic hashes produced that protect this data).
Thus, the probability that a particular path through the tree is produced for some particular data value is
p8 or ( 1

88 )
10. The likelihood that two independent values will have colliding hashes is p10 × p10 = p20, or

3.2× 10−145.
Cordelia modifies the hash size by producing a 7-byte cryptographic hash (as opposed to an 8-bytes)

and has a theoretically minimum number of hashes being 2, regardless of memory size. As a result, the
probability that two hash values will collide in Cordelia is p′, where p′ is 1/87 and the probability that two
paths through the tree may collide is as high as p′2. Thus, the likelihood that two independent values will
have a colliding hash is p′2 × p′2 = p′4 or 5.17× 1026. While this is a significant reduction in the number of
values to test for colliding hashes, the task of finding colliding hashes in Cordelia is still sufficiently difficult
to uphold the secure memory properties. That is, if you could try 1000 data values per second (consistent
with [219]), it would take approximately 4 years to come up with a fully colliding data path through the
tree by brute force. Furthermore, this will be even increasingly difficult with more levels frozen from the
Huffman part of the tree at the cost of some degree of adaptability.

3.5 Conclusion
Secure memory is a known bottleneck in memory intensive workloads. However, the performance impediment
of secure memory should not necessitate its removal from secure hardware. In this chapter proposed Cordelia,
an alternative approach to implement secure memory by reconsidering the construction of its underlying
data structures. It showed that by considering the data structure as a means to optimize the secure memory
protocol, Cordelia can improve performance of the system in a more scalable manner than by focusing on
the metadata cache. Beyond this, reducing the authentication path length may have nice implications for
emerging technologies, like non-volatile memories, which have limited device endurance.

With that said, Cordelia is not without its limitations. 1⃝ As detailed in Sec. 3.4, it requires less work to
create a collision in Cordelia than in a static alternative. 2⃝ Sec. 3.4.3 details the spatial overhead associated
to maintain the auxiliary FGK structures with Cordelia. 3⃝ Cordelia does not reconcile the issue identified
in some prior work that updates to the tree shape cannot occur in parallel with authentication. As a result,
Cordelia implements blocking behavior, which makes it difficult to reason about application performance. 4⃝
Maintaining these structures in memory further motivates the need to reduce the spatial overhead of secure
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memory. One approach to achieve this is discussed in Chapter 4.



Chapter 4

Baobab Merkle Tree for Efficient
Secure Memory

4.1 Introduction
As described in Chapter 1 and 2, secure memory has two key limitations against its practical deployment: (1)
the memory authentication protocol requires additional work on memory fetch, which limits performance;
and (2) secure memory metadata requires reserving a significant amount of in-memory space, which limits
the amount of data accessible memory. While there has been significant work towards resolving (1) [50, 23,
110, 146, 311] (including the work proposed in Chapter 3), there has been far less work towards resolving
(2) [251, 219, 291]. In fact, the proposed solution in Chapter 3, Cordelia, introduces additional metadata to
further optimize secure memory for performance, and the approach of using additional metadata is consistent
with several other works in the literature [310, 278, 270, 272, 268, 267, 269, 271, 178, 177, 309].

Resolving the spatial overhead of secure memory is an important problem. Every byte in a memory
device reserved for metadata is a byte that cannot be used by the application. This is antithetical to the
trends of modern computation, where applications use large quantities of data and have an increased demand
for memory capacity. Such is the motivation for emerging disaggregated memory architectures (detailed in
Chapter 6), which promise this increased capacity. In addition, constrained memory As a result, memory
intensive jobs may be killed by the operating system or the application will need to rely on slower, long term
storage to manage application data.

To alleviate this problem, this chapter proposes the Baobab Merkle Tree. The Baobab Merkle Tree takes
advantage of the observation that many counters in memory have the same value. This phenomenon has
been demonstrated in multiple of contexts [282, 187], and indicates that the space allocated to encryption
counters may be inefficiently used. Given this observation, this work proposes an alternative protocol where
encryption counter values are memoized in an on-chip table and the indices into the memoization table
become the leaves of the integrity tree. As a result, the integrity tree memory overhead is shrunk to 2− 4×
less compared to the BMT, as the index size is 2− 4× smaller than the counters. Furthermore, the Baobab
Merkle Tree increases the likelihood of finding a metadata value in an on-chip metadata cache because a
Baobab Merkle Tree node protects more data than its BMT equivalent.

46
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This chapter presents the following contributions:

1. It propose the Baobab Merkle Tree, which memoizes encryption counters in an on-chip table, decreasing
the spatial overhead of the integrity tree by 2− 4×.

2. It defines a technique to memoize encryption counters on-chip.

3. It evaluates the Baobab Merkle Tree in gem5 [162], and discusses the trade-offs of its design.

4.2 Background
Seeing as Chapter 2 details the secure memory protocol in detail, the focus of this section is to overview
the spatial overheads associated with secure memory metadata. In addition, this section examines the prior
work that considers the overhead of these structures and the literature that examines how to reduce the
spatial overhead of the metadata.

4.2.1 Spatial Overhead

As described in Chapter 2, secure memory metadata in a BMT1 can be classified as being an encryption
counter, a data MAC, or Merkle tree node. Each of these fields are explicitly designed to fit within a cache
block (i.e., they are 64-byte aligned).

Recall that, in a BMT, each data word requires a MAC for authentication. The MAC is typically an
HMAC (i.e., a cryptographic hash) of the data. Every 64-byte word of data has an 8-byte MAC associated
with its state. That is, it requires 1 byte of capacity to store a MAC for every 8 bytes of data capacity. In
order to maintain the MACs, a secure memory device must reserve 1

8 or 12.5% of its capacity for the “MAC
region” of metadata.

Furthermore, a BMT leverages counter-mode encryption (CME) [172] to encrypt its data state. In
particular, the CME implementation use a split-counter design [291] (i.e., counters are composed by a major
counter per page and a minor counter per word). A 64-byte block of counters consists of 64 seven-bit
minor counters and a single 64-bit major counter. Each minor counter is associated with a 64-byte block of
data, and the major counter is associated with each of the 64 data words in a page. This scheme implies
that 8-bits of counter metadata (i.e., 7 bits in the minor counter and 1 bit from the major counter) is
associated with each data word. That is, every byte of counter metadata is associated with 64-bytes of data
capacity. Formally, this means that a secure memory device must reserve 1

64 (1.56125%) of its capacity for
the “encryption counter” metadata region.

Finally, a BMT constructs a Merkle tree on top of the encryption counters. The tree is 8-ary (i.e., each
parent node has eight children), where node is composed of the concatenated 8-byte hashes of each of its
children. The number of nodes in the tree is a function of the number leaves (i.e., encryption counters);
this implies that the number of tree nodes is proportional to the data capacity of the memory device.
More precisely, the number of nodes in the tree N in a memory with C encryption counters is defined as
N = Σ∞

i=0⌊(C8i )⌋. The amount of space that a secure memory device needs to reserve is N ∗ 64 bytes.
1Note, BMT refers to Bonsai Merkle Tree [217]. The Baobab Merkle Tree proposed in this chapter will be referred to with
its full name.
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Table 4.1: The amount of space required to store metadata in a secure memory for various capacities.

data capacity MAC size counter size tree size %age of data capacity
1GB 128MB 16MB 2.3MB 14.286%

256GB 32GB 4GB 585MB 14.286%
64TB 8TB 1TB 146GB 14.286%

Table 4.1 formalizes the amount of space that a memory device would need to reserve for various data
capacities. Note, the percentage of space required for metadata increases (at a rate of less than .001%) as
the capacity increases due to the increased number of nodes.

4.2.2 Related Work

The spatial overhead of the proposed BMT organization proposed in [217] is described in Sec. 4.2.1. This
scheme is an improvement over the prior literature, which described building a Merkle tree directly over the
data [242, 243]. Seeing as the encryption counters are more compact than the data itself, a BMT is built
on top of fewer leaves. The resulting tree size is much smaller as a result. Further improvements in terms
of spatial overhead require at least one of: 1⃝ reducing the number integrity tree nodes, 2⃝ increasing the
density of encryption counters, and/or 3⃝ reducing the MAC size.

To reduce the number of nodes in the Merkle tree, VAULT [251] proposes a scheme in which the arity
of the integrity tree varies by level. The scheme targets trees of counters [75, 97, 93] and notes that nodes
closer to the root will be updated more often than nodes towards the leaves because nodes nearer the root
protect more data. Assuming data is accessed relatively uniformly, this means that it is safe to have fewer
bits allocated per counter. Despite having fewer bits in these counters, the fact that they protect fewer data
means that it remains unlikely that they overflow. The effect of having a higher arity is that fewer nodes
are required in the integrity tree.

Morphable Counters [219] works from the observation that the space reserved for encryption counters
is inefficiently utilized, even in a split-counter scheme. Much like in SYNERGY, this work makes the
observation that the space allocated to metadata is under utilized. In this work, the number of counters in
a cache block can dynamically shrink and grow as data is accessed at different frequencies. In particular,
counters can be maintained in “normal” mode or in “compressed mode.” As a result, a more compressed set
of counters means that the resulting Merkle tree is built on top of fewer leaves, therefore the resulting tree
requires less space as well. Note, when multiple potential metadata representations are possible, the secure
memory protocol needs to be flexible to either case and some further metadata is required to distinguish
between these cases.

SYNERGY [220] proposes a scheme in which MACs are co-designed with ECC bits. Seeing as ECC is
also a metadata field, these bits also require space to be reserved from the application in the memory device.
This work observes that ECC achieves two goals: error detection and error correction. A MAC also achieves
error detection. Therefore, the work proposes using these MAC values to perform error detection and a
small hint to inform correction. As a result, the spatial overhead of otherwise needing to maintain both ECC
and MACs is significantly reduced. This scheme has led to several follow on works [66, 67, 168, 189] that
similarly use MACs to help facilitate ECC.

In addition to increasing tree size, the VAULT protocol also implements, where possible, compressed
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MACs [251]. Some MACs are compressible, so this protocol compresses them where possible. If MAC
compression isn’t possible, then the protocol describes potentially using a single MAC to protect multiple
data. In this case, authenticating the data requires fetching all of the data that goes into that computation.
Much like in Morphable Counters, this scheme requires a mechanism to delineate between which of the
dynamic schemes are active for that protection.

4.3 Design
The Baobab Merkle Tree is a modification of the traditional BMT design that adds a single layer of indi-
rection. The tree, instead of protecting each data block’s counter, now protects the block’s associated index
into a memoized counter table. The table, containing all counter values, is stored within the on-chip memory
controller. The table is divided into rows (i.e., entries), and each row contains a group of encryption counters
(i.e., cells). Each data block is assigned to a fixed memoization table row, and its associated index (from the
tree) indicates the column of its current counter value. The total number of cells in the memoization table
is significantly smaller than the number of data blocks—the indices allow blocks to share counter values.

4.3.1 The Memoization Table

The memoization table is a fixed size buffer stored on-chip. This buffer is composed of r memoization table
entries, and each entry has c cells. The data stored in each cell reflects a counter value that can be used for
counter-mode encryption.

Unlike traditional secure memory designs, the proposed design does not implement a split-counter ap-
proach but instead uses a single block counter [291]. To reduce the likelihood of overflow and maximize
utilization of space, each counter in the memoization table occupies (64 − n) bits, which essentially resem-
bles the traditional major counter in the split-counter design. When incrementing a counter value (described
in Sec. 4.3.3), the Baobab system needs to consider the number of blocks currently using said counter value.
Thus, the proposed design includes a reference counter to track the number of blocks actively using the
encryption counter value. Only the 64 − n bit counter is used for encryption/decryption, not the reference
counter.

The remaining n bits of the column values are used to keep track of the number of blocks currently
using the counter. These bits represent a “sticky counter” [228], commonly used for reference counting.
For example, suppose the scheme assumes a 60 bit encryption counter and 4 reference counter bits. The
4 bits are incremented every time a new block uses the counter value and it is decremented when a block
changes to a new counter value. When the 4 bits reach their maximum value of 15 (i.e., 0xf) the reference
counter reaches the “non-decrement state.” and can only be reset by finding all blocks pointing to it and
re-encrypting them with a new counter value. The Baobab Tree takes this approach because it affords a cell
to be pointed to exclusively over time, and helps maximize in-place incrementation, which is discussed in
more detail below.

4.3.2 Baobab Merkle Tree

The Baobab Merkle Tree is a tree of indices rather than a tree of counters. The leaves of the Baobab Merkle
Tree are composed of n indices and each value is composed of log2c bits, where c is the number of cells per
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Figure 4.1: Layout of data in Baobab Merkle Tree leaves. Fewer bits are required for tracking the index of
a cell in a memoization table entry than for major/minor counters.

memoization table entry. The physical address of the data determines where the cell index is stored, which
is similar to how encryption counters are found in the traditional BMT design. Once the leaf node storing
the index is accessed, the value stored determines the cell in the memoization table entry with the counter
to be used for en/decryption.

4.3.3 Incrementing Counters

Figure 4.2: Incrementing counters using the elimina-
tion column.

Incrementing a counter in the memoization table de-
pends on its reference count and the state of the
other counters within its entry. In particular, there
are four types of increment scenarios in the mem-
oization table: (1) in-place increment (2) next-cell
increment, (3) free-cell increment, and (4) blocking
increment. Fig. 4.2 demonstrates each case.

In-place increment occurs when the block that
requires incrementing the counter is the only block
using that cell (Figure 4.2, scenario 1). If the current
cell holds the largest counter value in the entry or
if its counter value is at least two less than the next
highest counter value (to avoid duplication of counter values), then it is safe to increment the current counter
value in the column. The corresponding index in the Baobab Merkle Tree does not need to change. As such,
no secure memory metadata access to main memory is required because leaves in the Baobab Merkle Tree
refer to indices, which in this case do not change. This is a performance savings versus baseline BMT
implementations.

Next-cell increment (scenario 2) occurs when the data is mapped to a cell with a reference counter greater
than one and where there is another cell in the entry with a higher encryption counter. It also occurs when
a cell has a reference counter of one and another cell in the entry has an encryption counter one more than
the current encryption counter to avoid duplication of counter values. In this case, the data block needs
to now use the index of the next greatest encryption counter in the row. As such, this new index is stored
in the Baobab Merkle Tree, whose state has changed requiring an update to the tree. In terms of memory
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operations, this case exhibits similar behavior to a standard write in a BMT. If the conditions for both in-
place increment and next-cell increment exist, the memoization table chooses to use the next-cell behavior
so as to ensure that the same counter value cannot occur twice within an entry. Most operations will either
be in-place or next-cell incrementations.

Free-cell increment (scenario 3) occurs when data uses the cell with the highest encryption counter which
is not held exclusively, but another cell in the entry has a reference count of zero (i.e., a free cell). In this
case, the increment uses the free cell, filling it with the value of the incremented prior encryption counter.

Blocking increment (scenario 4) occurs when the data uses the cell with the highest encryption counter
with a reference counter greater than one, and the entry has no free cells available to reuse. For this case,
the system reserves the last column of the memoization table entry as the “elimination column.” Its usage
is depicted in Fig. 4.2. Suppose, after some time, the entry takes the state of the upper row in Fig. 4.2
scenario 4. In order to increment from 22 (i.e., next cell increment), the elimination column is filled. This
locks further authentications to the entry to avoid conflicts. Then, in the lower row, unblocking is achieved
by scanning for the least referenced cell in the entry and re-encrypting those data with the new encryption
counter value created in the elimination column (i.e., re-encrypted with 23). The encryption counter from
the elimination column then replaces the cell with the fewest references, and that data is re-encrypted with
the new counter value. To find which data need to be re-encrypted, the scheme needs to perform a reverse
mapping from counters to data to check which data points to that column and needs to be re-encrypted. To
ensure that there is adequate hardware, all authentications that require this memoization row are blocked
while re-encryption is happening. This is necessary so as to ensure that there are not two unique counters
that both need the elimination cell in the same memoization table entry in parallel. In the worst case,
each of the SNZI counters will be in the non-decrement state. When this occurs, upon doing the reverse
mapping scan, the SNZI counters are updated with their correct value (which can reset them away from
non-decrement state) and the truly least pointed to cell is determined.

4.3.4 Assigning Blocks to Memoization Entries

The assignment of data to memoization table entries is an important feature of the Baobab Merkle Tree.
To improve effectiveness, assignment of data to an entry works from a heuristic to increase the likelihood of

Figure 4.3: Memory assignment from address to mem-
oization table row.

in-place increment and decrease the likelihood of
needing a blocking increment.

This scheme works from the observation that,
like virtual memory, physical memory exhibits spa-
tial locality (especially within a page). As such,
contiguous data blocks (64 bytes) within a page
should be mapped to different memoization table
entries. By doing so, the frequently used data within
a page will have its counters increase monotonically
in-place in different memoization table entries. If
no physical locality is observed, blocks will need to
increment counters at similar but slightly different
rates, which will occupy more cells per entry. The scheme “stripes” the memory address in their mapping
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to memoization table entry, as per Figure 4.3. That is for each address (e+ i)/64, where e is the number of
memoization table entries and each data block is 64 bytes, that address will be mapped to entry with index
i in the memoization table.

4.3.5 Security Implications

In order to uphold secure memory semantics, Bonsai MTs protect the integrity of encryption counters and
use data MACs to ensure that data has not been corrupted [291]. The intuition is that only the uncorrupted
encryption counter can produce the decryption key that decrypts the data to plain-text that matches the
MAC. In the Baobab Merkle Tree, counters cannot be tampered as they are stored on-chip. Any attempts
to tamper or replay the pointer will be detected by the integrity tree in the exact same way that the BMT
would detect tampering or replaying of encryption counters in memory.

4.4 Evaluation

4.4.1 Methodology

The Baobab Merkle Tree is implemented as an extension to gem5 [162], a cycle-accurate full system simulator.
The simulator is configured with four-cores where each core has private L1 and L2 caches, with a shared
8MB L3 cache. The integrity tree is 8-ary, and the “leaf” arity is n-ary (configuration dependent, but either
128-ary or 256-ary, described below). THe processor use a 32kB metadata cache and a 224kB memoization
table. Each cell in the table is 8-bytes, with 58 bits belonging to the encryption counter and 6 bits acting
as the sticky reference counter. There are two baseline approaches, one with a comparable metadata cache
size to the Baobab Merkle Tree (i.e., 32kB metadata cache) and one with a comparable on-chip resource
size (i.e., 256kB metadata cache). The simulations use SimPoint to determine the region of interest in each
benchmark, and run 500 million instructions from this region of interest. In order to avoid inaccuracies in
modeling due to cold-boot, the simulations begin by prefilling the memoization table state. The prefilled
contents are collected from memory traces of each of the SPEC 2017 CPU benchmarks [40] run back-to-back
while modeling what the table state would be offline from the simulation. The evaluation is performed
using the SPEC 2017 CPU benchmarks and the Belgian street network workloads from the GAP benchmark
suite [25].

4.4.2 Spatial Overhead

The spatial overhead of Merkle Trees in secure memory scales proportionally to the overall memory size.
Table 4.2 shows the amount of reserved memory space required to store the integrity tree across configu-
rations, showing both a Baobab and traditional Bonsai Merkle Tree. The fact that the scheme can protect
and authenticate twice as much data per leaf in the Baobab Merkle Tree versus the Bonsai means that the
Baobab Merkle Tree requires half as much space in memory as the Bonsai MT.

The Baobab Merkle Tree size strictly depends on the number of cells within a memoization table entry.
If, for example, 4 cells per entry are stored, then only 2 bits are required to track the index into the entry,
and thus the Baobab Merkle Tree has a spatial reduction of 4X rather than 2X (256-ary versus 128-ary leaf
level). However, this evaluation opts for 16 cells per entry in order to limit the number of blocking cases,
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Figure 4.4: Evaluation across SPEC CPU 2017 and GAP benchmark suites. (Shapes) Execution overhead of
the benchmark normalized to baseline secure memory protocol with 32kB metadata cache. (Bars) Metadata
cache misses per LLC miss. In both metrics, lower is better.

requiring 4 bits to index into the memoization entry. Blocking cases can be done in parallel with accesses to
different memoization table entries, so they do not impact performance, but they should still be avoided as
much as possible to reduce the bandwidth requirement to service these requests.

The trade-off of reducing the number of cells per entry is that it reduces the number of possible “in-use”
counter values per data. That is, with four cells per entry, all data assigned to that entry will be in one of
four possible states at any moment in time. The drawback of having fewer possible “in-use” counter values is
that it increases the likelihood of reaching a blocking case and reencryption may be more expensive because
there are fewer alternative locations where this data to be stored.

4.4.3 Runtime Evaluation

This evaluation uses the SPEC 2017 CPU benchmarks [40] to evaluate the overhead of the Baobab Merkle
Tree over a BMT. In general, the evaluation demonstrates negligible overhead of the Baobab Merkle Tree
versus the baseline protocol with comparable metadata cache size and the comparable on-chip size. SPEC
CPU is a general purpose benchmark suite, and as such provides an intuition of how the Baobab Merkle
Tree would perform on average. In these cases, the Baobab Merkle Tree does not exhibit any performance
overhead over the BMT. Figure 4.4 (shapes) shows that, the normalized performance of the Baobab Merkle
Tree relative to the baseline BMT protocols (with a 32kB metadata cache) in terms of normalized number
of cycles for the SPEC 2017 CPU benchmarks [40]. on average, the Baobab Merkle Tree implementation
does not impact performance; it has an average performance benefit of less than two percent. That is, any
differences in performance cannot be attributed to anything other than noise. As per [282], the latency to
update a memoization table entry is 2ns, which is negligible relative to the memory access latency. For this
reason, the overhead due to indirection incurred by the Baobab Merkle Tree is similarly negligible. While
there is some additional information being tracked in the memoized data itself (i.e., the sticky reference

Table 4.2: Description of the spatial trade-offs in the Baobab Merkle Tree for varying memory sizes.

Blks/Row Baobab MT Bonsai MT
1GB 66K 9.5MB 19MB
8GB 524K 76MB 153MB
256G 16M 2.5GB 5GB
1TB 67M 9.5GB 19GB
8TB 536M 78.5GB 157GB
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counters), updating these values can be done at the same cycle and do not incur additional execution
overheads. Furthermore, the evolution finds that the metadata cache hit rates are very high in the baseline
approaches. In particular, the evaluation shows that only perlbench exhibited metadata cache hit rates
below 97%. Even memory intensive benchmarks such as mcf and lbm exhibit strong re-use locality of
security metadata. Given these factors, the Baobab Merkle Tree has no significant overhead relative to the
baseline secure memory model, the impact of reduced metadata cache misses does not show its head in terms
of overall performance. However, the evaluation also shows that the Baobab Merkle Tree does not have a
negative impact on performance.

The Baobab Merkle Tree has a significant reduction in metadata cache misses relative to the Bonsai
MT baseline, even though more on-chip space is used by the metadata cache. Figure 4.4 (bars) shows the
number of overall metadata cache misses per last-level cache miss, comparing Baobab against the baseline
secure memory systems with different metadata cache sizes. In every case, Baobab makes better use of the
metadata cache capacity, resulting in a reduction in metadata cache misses.

Updates to the memory state do not necessarily result in updates to the underlying Baobab Merkle Tree
state. As described in Sec. 4.3, the tree only needs to be updated when the index into the memoization
table changes. In the BMT, every write to memory requires incrementing the minor counter protecting
that data. Given this, the Baobab Merkle Tree can have a reduction of about 2% of updates to memory
in 620.omnetpp_s benchmark. This is a function of the benchmark’s hotness within a particular region
of physical memory. Other benchmarks from the SPEC 2017 CPU suite do not exhibit the same levels of
physical locality, and as a result do not have a reduction in the number of writes to physical memory.

4.5 Conclusion
This chapter presents the Baobab Merkle Tree, a secure memory protocol that describes a Merkle tree of
indices into a memoization table rather than encryption counters. Seeing as indices require fewer bits than
the counters themselves, the Baobab Merkle Tree reduces the spatial overhead of the integrity tree by 2−4×.
Furthermore, by making data more compact, the Baobab Merkle Tree reduces metadata cache misses, which
can be a promising approach for metadata cache dependent secure memory protocols. The Baobab Merkle
Tree is a promising direction for future optimizations in both performance and spatial overheads of secure
memory.

While the Baobab Merkle Tree sets out to mitigate the spatial overhead of the integrity tree structure,
plenty of opportunities remain to reduce the spatial overhead of secure memory. The integrity tree is the
lowest overhead component of the secure memory metadata fields. The biggest bottleneck continues to be
the MAC structures. Although the work in [251] begins to address this issue, further reductions in MAC
size begins to infringe on cryptographic primitives [86]. Appendix B overviews a novel proposed direction
towards this end. At a high level, the idea is to consider the compression of data to improve the utilization
of its associated metadata. If a memory device stores more data per word, then the utility of the associated
metadata is increased.

The Baobab Merkle Tree is subject to further limitations. 1⃝ While the Boabab Merkle Tree requires
less space than a normal BMT, the reverse mapping structure in memory is an additional metadata field
that requires some storage capacity. 2⃝ Blocking authentications to a row in the memoization table can lead
to similar performance degradation as the restructuring operation associated with Huffman reconstruction
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described in Chapter 3. As a result, it may be difficult for an application to reason about the longest
latency memory access. 3⃝ The memoization table on-chip proposed in the Baobab Merkle Tree requires
more area than Intel SGX proposed in its memory controller extension. 4⃝ As described above, there are
several other metadata fields that dominate the spatial overhead of secure memory. In particular, storing
MACs in memory requires significant space.



Chapter 5

A Midsummer Night’s Tree: Efficient
and High Performance Secure SCM

5.1 Problem Statement
Traditionally, “memory” has been synonymous with DRAM. Unfortunately, these devices put restrictions on
the maximum capacity of a main memory given their limited density [197, 141]. Such is the motivation for
emerging memory technologies. In particular, non-volatile memories (NVMs) describe a class of technologies
that are a particularly attractive alternative as the transistor design is more amenable to scaling. Unlike
DRAM, which relies on controlling discrete electrons for data storage, phase-change memories (PCM) uses
analog current and thermal effects to manage data storage [141].

The notion of “volatility” refers to the storage of data in the device under a loss of power. A volatile
memory device, like DRAM, requires power to perform row-refresh in order to retain its state. As a result,
a loss of power implies a loss of data state in these technologies. Alternatively, NVMs retain their state
through a power loss. As a result, NVMs provides the basis for storage-class memories (SCM) [192]. A
SCM describes a non-volatile storage device that is accessible by a CPU through the same DIMM interface
as a DRAM device. This naturally affords the design and deployment of server-scale applications that use
memory as its long-term storage interface (as opposed to an external device accessed via I/O) [108, 129].

Programmers using computing platforms with SCM must account for the crash consistency of the data.
That is, because application data in memory will be persistent through a crash, it is possible that merely
restoring the device and resuming execution will lead to incorrect behavior [199]. On-chip cache state is
inherently volatile. For instance, the correct and coherent version of some data may reside in the cache
state on a loss of power, so the application may have an incomplete view of the program state on system
restoration. Alternatively, the cache hierarchy may evict data from its state to be written back to memory in
an arbitrary manner with respect to program order. In both cases, correct execution is achieved in practice
by offloading the task of persistence to the programmer to explicitly implement [20, 78, 180].

To implement secure memory for an SCM, the memory controller must achieve a similar end as the
programmer. If the secure memory protocol uses a metadata cache, which Chapter 2 indicates a is necessary
prerequisite to achieve practical performance, then some metadata state is subject to inconsistency upon
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system restoration. However, the potential crash inconsistency of metadata is critical for correct execution.
Incorrect crash consistency can lead to incorrect detections of corruption thereby incorrectly rendering a
system state maliciously tampered. As a result, the correct crash consistency of secure memory metadata is
an issue of paramount importance.

5.2 Introduction
Traditional systems with volatile memory technology suffer from active and passive physical attacks where
data in memory can be selectively targeted and corrupted [186, 208, 163, 118]. Protecting against these
vulnerabilities must be done in hardware, and has been thoroughly investigated over the past two decades [51,
128, 285]. However, since volatile memory systems lose their state when power is disconnected, prior work
did not have to address the data remanence problem [234]. Storage class memory (SCM) systems use non-
volatile technologies as main memory, so data will remain intact even after power is disconnected. Such
systems are natural candidates for large memory applications, where there is a lot of data that may be
queried and stored. Disk storage is not viable for these cases due to its latency, and volatile memories are
not viable due to the lack of persistent data storage. Moreover, SCM systems face new physical attack risks
due to their application, providing attackers with extended opportunities for splicing, spoofing, and replay
attacks. Thus, SCM requires a solution for protecting data in memory, such as secure memory guarantees
and protections.

As described in Sec. 5.1, the key issue to a secure memory for SCM is to ensure the crash consistency of
its metadata. To achieve this, the secure memory protocol could instead persist all values that are written to
the metadata cache directly to memory. In doing so, the caching policy can be referred to as a write-through
cache, as opposed to its typical writeback nature. This scheme, termed strict metadata persistence, is crash
consistent because each of pt, Ct,Ht, and Tt are persisted directly and atomically, so all values in memory
are in a crash consistent state at all times. However, this scheme is not realistic, as it can lead to steep
performance overheads (up to 25×) at runtime.

An alternative approach, dubbed leaf metadata persistence [294], addresses the performance issue by
taking a lazy approach to crash consistency. That is, only pt,Ht, and Ct are persisted directly at runtime.
The tree nodes Tt are written to the volatile metadata cache and only written back to memory on eviction
(i.e., they are not written-through directly). After a crash, at system recovery, each of the inner nodes of
the integrity tree are recomputed from the hashes of its leaves (i.e., the counters). If the computed tree
root matches the stored tree root, then the system can be safely rebooted. However, this recovery procedure
is pessimistic because all inner nodes of the tree are assumed to be stale/untrusted, and recovery will be
worse as memory capacities continue to grow beyond the scale of current SCM devices. These two extreme
baselines describe an inherent trade-off between runtime performance overhead and recovery time. That is,
performance overhead is reduced as crash consistency models become lazier, but at the cost of increasingly
unreasonable recovery times.

The current state-of-the-art navigates this trade-off space, and can largely be categorized as being either
a static [23, 226, 294] or dynamic [9, 278, 209, 80, 310, 8, 6, 48, 147] negotiation of performance overhead due
to crash consistency and recovery time. Static approaches work well to strictly reduce the overhead due to
maintaining the crash consistency of secure memory metadata [294], reducing the work required at recovery
time [23], or partitioning hybrid untrusted device semantics [226], but these approaches miss out on potential
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performance benefits by treating all addresses the same. Dynamic approaches, on the other hand, explicitly
track application behavior to ensure that “hot regions” of memory benefit from having shorter paths through
the integrity tree to persist values [209, 80], maintain an auxiliary “fast tree” in which frequently accessed
values can be directed to a more relaxed crash consistency protocol [278, 9], or add auxiliary structures to
further protect the metadata cache [310, 8, 6, 48, 147]. A limitation of these approaches, however, is that
hot region tracking in hardware is difficult, and is dependent on application behaviors. Furthermore, these
approaches tend to come at the cost of hardware complexity, a third component in this trade-off space that
hasn’t been emphasized to the same extent as performance or recovery.

Considering the cost of hardware complexity is important in terms of the performance scalability and
security of secure memory. If the space for these devices occupies too much trusted space (i.e., on-chip),
there will be less space for other devices like the last level cache, thereby causing more fetches to go to
untrusted SCM and further binding application performance to the performance of secure memory.

This chapter proposes A Midsummer Night’s Tree (AMNT) 1, a “tree within a tree” metadata persistence
protocol that provides integrity-protected SCM with a low runtime overhead and a bounded recovery mech-
anism. AMNT’s design goals are to achieve a crash recovery scheme with low runtime overheads, bounded
recovery times, and maintaining limited area overheads both on-chip and in memory. AMNT achieves these
goals by implementing a hybrid metadata persistence protocol that is adaptive to workload characteristics at
runtime.

AMNT works from the insight that certain “hot” regions of physical memory may be accessed with
more regularity, whereas an application may never access other regions. AMNT leverages this insight by
implementing a hot-region tracking mechanism in which a small region in memory gets to benefit from
a lazy metadata persistence scheme. As a result, only a small and bounded amount of memory will be
stale/untrusted at the time of a crash, and the amount of metadata to recover is similarly small. In addition,
AMNT gives a system administrator the ability to dictate the tolerable recovery time after a crash by
selecting, in BIOS, the maximum stale data size (defined by the level at which the subtree root is placed).
This chapter demonstrates that this insight holds true for several applications with varying characteristics.
For adversarial cases, AMNT turns to software to modify behavior at the application layer to better take
advantage of more tightly bounded physical regions of memory, which minimizes AMNT’s physical area
overhead.

In summary, this chapter makes the following contributions:

• It presents AMNT, a dynamic hybrid metadata persistence scheme for secure SCMs that performs hot
region tracking to adapt to in-memory behaviors at runtime.

• It introduces AMNT++, an optional hardware-software co-design physical page allocator that acts as
an addition to AMNT in order to improve the likelihood of an in-use page to be tracked in the hot
region.

• It shows how AMNT uses 96 bytes of volatile on-chip space and 64 bytes of non-volatile on-chip space,
which is agnostic to memory and metadata cache size.

1In William Shakespeare’s play A Midsummer Night’s Dream, the Mechanicals perform a play called “The Most Lamentable
Comedy and Most Cruel Death of Pyramus and Thisbe,” which is known as a “play within a play.”
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• It demonstrates how a system administrator can bound the recovery time using this proposed approach
to achieve desired performance goals.

5.3 Background
Seeing as the secure memory protocol is overviewed in detail in Chapter 2, the goal of this section is to
overview the challenges of implementing secure memory in an SCM device and provide an intuition into
some of the related work in the area.

5.3.1 Secure SCM

Storage class memories (SCMs) describe a system based on emerging technologies in which main memory
is non-volatile. These devices are appealing in that they promise near-DRAM latency with the persistence
properties of long-term storage devices. As a result, they are a natural candidate for data storage applications
where performance is bound by disk accesses. These types of applications use main memory to enforce
persistent semantics. Unlike traditional DRAM-based memories, data in SCM will persist through a crash
(i.e., its state is retained without power). Thus, SCM systems face the challenge of ensuring the crash
consistency of secure memory metadata. When values are updated in on-chip volatile caches, their values
become stale in main memory due to its non-volatility. Barring additional action, in the event of a crash,
the up-to-date values in cache will be lost, leaving behind stale values in non-volatile memory and rendering
the program unrecoverable on reboot forgoing the benefits of SCMs.

Various software libraries (e.g. [45, 120, 205, 274, 58]) and hardware extensions (e.g. [306, 191]) provide
the programmer sufficient control to avoid data inconsistency problems and ensure application data is crash
consistent after a power failure. Like application data, security metadata (i.e., HMACs, counters, and the
BMT) must also be crash consistent to ensure that data can be authenticated after a crash. Unlike application
data, secure memory metadata is not accessible to the application, requiring the on-chip memory controller
to enforce its persistence. An implication of this phenomenon is that the root of the BMT must always reflect
the state of data in main memory, and updates to the state and the root must be atomic. Furthermore, the
root of the BMT must be stored in a non-volatile on-chip register in order to be trusted through a crash.

In general, strategies for ensuring metadata is usable after a crash fall on two extremes. A strict metadata
persistence strategy ensures that all BMT values are consistent with the state of the data in memory at all
times – on a crash, all metadata is guaranteed to be stored in a non-volatile device and can be used for
integrity verification. However, this method exhibits high runtime overhead. On a data write, each node in
the ancestral path of the BMT must be updated in the on-chip metadata cache and written-through to main
memory. While this technique is expensive at runtime, recovery is trivial, as all metadata is immediately
available on restart.

By contrast, a leaf metadata persistence strategy, while improving runtime performance, significantly
increases recovery time. In this strategy, only the BMT leaf (i.e., counter) and root updates are done
atomically with a data write. The rest of the security metadata is updated lazily on a writeback from the
metadata cache. On system failure, all inner BMT nodes must be assumed to be stale in SCM, and must be
recomputed. In order to recompute the BMT nodes, BMT leaves must be fetched and their hashes computed.
Inner-BMT nodes are composed of the keyed hashes of their children, which makes the computation of a
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node in the BMT dependent on the fetch of each of its children. The data dependent nature of BMTs limits
the number of productive parallel memory fetches to BMT sibling nodes, and implies that a large number of
bursts (proportional to memory size) must be performed in order to recompute all of the inner BMT nodes.
As such, recomputation can last billions of cycles and spans all of secure memory metadata, which, for SCM,
may run into the terabytes. Once recomputed, the BMT hashes are compared to the root, which is stored
securely and persistently on-chip.

5.3.2 Prior Literature

Osiris [294] further relaxes the leaf metadata persistence protocol by introducing a “stop-loss” persistent
metadata cache for BMT leaves. The protocol persists leaves after every n data updates to ensure that
they can never be more stale than the stop-loss frequency. As a result of the persistence relaxation, full
BMT recovery in Osiris is slower than in leaf metadata persistence. Combining persistence techniques is
not novel. Prior art has proposed partitioning the persistence policy of some metadata statically based on
its tree level [23] or based on its residence in volatile or non-volatile memory [226]. Prior art suggested
statically partitioning the persistence policy of metadata based on its tree level [23] or its location in volatile
or non-volatile memory [226]. However, there is no prior work that proposes a dynamic persistence scheme.
In order to recover leaves on a crash, each counter is checked against a MAC stored in the ECC bits of the
data, and the counter is incremented if the comparison fails.

Persist Level Parallelism [82] focuses on fast integrity tree updates and explores the benefits of having
parallel updates of the BMT under strict conditions that guarantee correct crash recoverability. However,
these works are not dynamic to changing application behavior and as a result do not see the benefits in
terms of recovery time in the case of Osiris nor normal case runtime overhead in the case of Persist Level
Parallelism.

Anubis [310], much like AMNT, provides low run-time overhead and fast recovery. However, Anubis
takes a fundamentally different approach to crash consistency, and enforcing this protocol has implications
on runtime behaviors and overheads. Anubis tracks the metadata address currently residing in the volatile
state (i.e., in the metadata cache) in persistent memory. This region of memory, dubbed a “shadow table”,
essentially creates a log of all potentially stale metadata values in the persistent state at the time of a
crash. Thus, any update to the cache state (misses, evictions, and writebacks) require updating the state
of the in-memory shadow table. However, because this table resides in untrusted memory, it too needs to
be protected by an auxiliary “shadow Merkle tree” to preserve its integrity. Thus, updates to the shadow
table also result in updates to the auxiliary “shadow Merkle tree.” While this protocol results in low runtime
overhead in most cases, it makes the case of a metadata cache miss more expensive. Anubis works from the
observation that updating this table is infrequent because the metadata cache tends to exhibit good locality.
We further note in our evaluation that updating the shadow table needs to be atomic with updating the tree
state, and there may be multiple shadow table updates on a single authentication (due to multiple misses
in the metadata cache). Furthermore, it requires caching the entire shadow Merkle Tree on-chip to avoid
even more memory persists per data access. By contrast, the AMNT protocol trades off tracking of the stale
nodes for minimal area overheads while still bounding the recovery time. Furthermore, AMNT is not bound
by the hit rate of the metadata cache. Instead, it is dependent on a hot region tracking mechanism, in which
the complexity is offloaded to software.
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Bonsai Merkle Forest (BMF) [80] is a protocol designed to dynamically reduce the leaf-to-root write path
for frequently accessed nodes. To do so, BMF extends the persistent register used to store the BMT root into
a non-volatile metadata cache to store several roots of frequently accessed values (dubbed the “persistent
root set”). BMF determines which BMT nodes qualify to be stored in the persistent root set, and tracks
accesses frequency counters for the cached blocks in the non-volatile metadata cache. On a pre-determined
interval, BMF uses these access frequency counters to “prune” a frequently accessed root into its most
frequently accessed children or “merge” colder roots into their parent node. This mechanism ensures that
all nodes in the BMT are covered by a persistent root, which is an important correctness property for this
approach. However, this property also implies that it is infeasible to perform a hybrid metadata persistence
strategy. As a result, it suffers from the limitations of whichever crash consistency policy it implements.
More frequently accessed subtrees are tracked by persistent on-chip subroots to ensure that nodes in these
paths do not need to persist updates from the leaves to the true root of the tree. These changes to the
set of cached nodes changes dynamically, and incrementally across intervals. For BMF to work, it requires
that all leaves are protected by a subtree. However, their work focuses on improving performance of BMT
root updates by expanding the persistent domain, and recovery time is not a primary concern. In order
for BMF to be recoverable in a reasonable amount of time, its underlying protocol must implement strict
persistence. Like BMF, AMNT considers the frequency of accessed nodes for persistent state but leverages
this frequency to improve runtime performance and bound the recovery time to a well defined limit. Unlike
BMF, AMNT does not assume full leaf coverage of a fast subtree, so it can improve runtime overhead without
jeopardizing fast recovery. AMNT’s protocol does not entail incremental changes to track hot nodes, and as
a result exhibits better performance than BMF. Furthermore, AMNT does not require buffers of non-volatile
memories on-chip, to cache the large number of roots required for full leaf coverage as BMF does.

Some prior works consider multiple persistence protocols in secure memory to benefit performance [226,
23]. For example, Triad-NVM describes a protocol in which entire levels of the tree conform to a particular
persistence protocol [23]. Such a behavior is similar to leaf persistence, where leaves and some number of
ancestral levels of the leaves are written-through to main memory. AMNT similarly implements multiple
persistence strategies, but determining which strategy to use is done dynamically based on application
behavior. OMT describes a protocol for hybrid embedded volatile and non-volatile memories, that leverages
a single integrity tree with different strategies for data in different devices [226]. AMNT abstracts well to
a hybrid SCM-DRAM machine as it does not require significant protocol or hardware changes. AMNT
protects SCM, and a traditional BMT protects DRAM. This solution only requires an additional (volatile)
register for the BMT and knowledge at the memory controller of the SCM/DRAM physical address partition.
Furthermore, AMNT dynamically leverages leaf metadata persistence in the most frequently accessed SCM
region.

5.4 Threat Model
This work assumes the threat model described in Sec. 2.2. Within this, it is worth noting that this threat
model makes no assumptions about the software running on the underlying hardware platform. Therefore,
a modification to the operating system does not provide an attacker any additional mechanism to exploit
the physical vulnerabilities of a memory device. Other attacks beyond the scope of this work’s threat model
may be introduced, but defending against these are an orthogonal problem.
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5.5 A Midsummer Night’s Tree
The proposed solution, A Midsummer Night’s Tree (AMNT), is a secure SCM protocol that balances a
reasonable runtime overhead with controllable recovery times and minimal hardware overhead. AMNT
achieves its goals by using dynamic hybrid metadata persistence strategies within the same BMT [217].
Applications tend to exhibit spatial locaity across phyiscal addresses, which leaves an opportunity to create
a secure SCM system with both low runtime overhead as well as low hardware overhead. This section also
proposes an optional mechanism to further optimize AMNT, called AMNT++, which adds a lightweight
modification in the physical page allocator to further improve the design’s performance.

5.5.1 “A Tree Within a Tree”

This work assumes that a small number of contiguous addresses in physical memory are frequently accessed
(i.e., “hot”). Given this assumption, this section proposes AMNT, which protects a small region of phys-
ical memory with a fast persistence protocol while most addresses are persisted strictly to keep the work
required at recovery time low. AMNT is a dynamic metadata persistence protocol that tracks hot regions
of physical memory within a subtree of the underlying BMT in order to adapt to changing in-memory hot-
ness at runtime. The subtree implements a leaf persistence strategy, where tree nodes are assumed to be
stale at the time of a system failure (blue nodes in Figure 5.1). The rest of the BMT implements strict
persistence to minimize recovery time after a crash (red nodes in Figure 5.1). Given that a small contiguous
region of addresses are frequently accessed, AMNT makes updating them fast. Implementing strict persis-
tence outside of the subtree, while slow at runtime, will not occur often, minimizing the impact on overall
performance and reducing the work required at recovery time. Note, AMNT works because the number of
leaves covered by the subtree is small. If AMNT were to implement a large number of subtrees, and a large
number of leaves in the BMT were protected by the leaf metadata persistence policy, then the amount of
time to recover after a crash would devolve towards leaf metadata persistence. By splitting BMT nodes
into multiple persistence models, the recomputation required at recovery is a function of the subtree size.

Figure 5.1: A Midsummer Night’s Tree. Red nodes
implement strict persistence. Blue nodes implement
leaf persistence.

Implementing the AMNT protocol involves split-
ting the BMT into the main tree with strict meta-
data persistence (slow runtime, fast recovery) and
a subtree with leaf metadata persistence (slow re-
covery, fast runtime). The subtree root, situated
at an internal BMT node, is placed in an on-
chip non-volatile register; its descendants are ex-
pected to contain frequently-accessed data. The fast
subtree register allows for data authentications to
quickly determine their persistence protocol. This
approach makes data updates within the subtree
much faster—the associated tree node writes only
need to be updated in the metadata cache. In contrast, if a data update occurs outside of the subtree, it
will need to wait for all BMT nodes on the ancestral path to be written-through to persistent memory.
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Given the metadata persistence strategy, all values outside the subtree root in the BMT are not stale at
the time of a crash. To recover the BMT, AMNT only needs to recompute nodes inside the subtree; recovery
time depends on the subtree size determined by the subtree root level. System administrators can control
recovery time by configuring the subtree root level in the BIOS, and this work offers insight into the trade-off
between recovery time and runtime overhead in Section 5.7.

5.5.2 Hot Region Tracking

The AMNT protocol assumes the subtree root resides at a particular level of the BMT configured in the
BIOS. Any node can become the subtree root at this level depending on application behavior in memory (i.e.,
the subtree root can move horizontally in the tree). Each node at this level protects a contiguous physical
address space, termed the subtree region. In order to efficiently determine the most frequently accessed
subtree region, AMNT makes use of a lightweight history buffer.

The history buffer has n entries and tracks the n most recent memory writes. Each entry has a subtree
index (identified by the index of the node within the subtree level) and a log2n counter. On a data write,
the subtree index of the corresponding data address is updated by scanning the history buffer for that index
and incrementing the counter. If the node becomes the most frequently accessed, swapping the node with
the head element ensures the head of the buffer always refers to the most frequently used subtree region (the
largest counter). While updating the history buffer can be done in parallel with the initial counter fetch
(all authentications need to fetch the encryption counter), the history buffer is not fully sorted to minimize
complexity. In this approach, the head element is guaranteed to be the maximum. After n data updates to
memory (64 by default), the head of the buffer is selected as the new subtree root. After the next subtree
root is established, the counters in the buffer get zeroed out and the tracking starts again.

When transitioning from subtree T to T ′, all inner integrity nodes of T must be persisted before T ′ can
implement the leaf persistence protocol in order to preserve the crash consistency and security guarantees.
Note that the only ancestral paths from subtree T that need to be written to memory are those originating
from modified (dirty) data. AMNT can quickly determine which nodes need to be updated in memory by
scanning the dirty bits in the metadata cache. Only nodes in the metadata cache that fall within the subtree
will have their dirty bits set as all other metadata blocks are written-through to memory. The path from T

to the root must always be persisted on movement.
The history buffer is a lightweight method to track the most frequently used regions of memory to select

the best subtree root. Each entry in the history buffer requires at most log2n bits for the region’s index and
an additional log2n bits for the counter, resulting in n ∗ (2log2n) additional bits. For a subtree at level 3 (64
possible subtree regions), the additional number of bits is 768, requiring an additional 96 bytes of on-chip
area. Thus, in practice operations such as scanning the history buffer to increment the frequency counter
associated with a subtree region are inexpensive (two cache accesses) relative to memory access latency. Once
found, the logic to update the buffer is a simple add and comparator that updates the head of the buffer
based on if the target counter is larger than the head’s counter. In the event of a tie, the current subtree
root stays at the head of the buffer to avoid a subtree movement. Given that the updating the history buffer
and transitioning the subtree are not critical to the authentication of data, they can occur out of the critical
path of data authentication.
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(a) Single program behavior (lbm).
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(b) Multiprogram behavior (perlbench and lbm).

Figure 5.2: Memory accesses per address in single program and multiprogram workloads.

5.6 AMNT++
AMNT is predicated on the assumption that a small, contiguous address range in physical memory is
protected by the fast subtree. However, while this assumption may hold true for a single application, it may
not in a realistic scenario (i.e., a multiprogram environment). Fig. 5.2a shows the number of memory accesses
per physical address in the lbm benchmark from the SPEC CPU benchmark suite, whereas Figure 5.2b shows
the number of memory accesses per physical address when running two programs (perlbench and lbm) in
parallel. As evidenced by the figure, multicore systems that run multiple applications prove the assumption
driving AMNT may not exist in practice. To address this limitation, one could consider a protocol that
has “per-core subtrees” to track hotness, but such a solution would result in complex and large hardware
requirements for devices with hundreds of cores. Instead, AMNT proposes a hardware-software co-design
called AMNT++ to keep hardware complexity low and modify application behavior from the operating
system’s memory management unit to bias allocation of physical pages towards highly available subtrees in
order to maximize potential subtree locality.

To increase the effectiveness of AMNT, all applications should ideally work in the same subtree region
whenever possible to increase subtree locality. In order to further optimize AMNT, an optional hardware-
software co-design mechanism to improve hit rates in the fast subtree may be deployed. Consolidating
frequent memory accesses into a single subtree can be an important performance optimization, which is
maximized through lightweight modifications to the physical page allocator in the operating system (OS).
Lower subtree hit rates imply that AMNT will write-through more nodes of the underlying BMT. To help
optimize subtree hit rates, AMNT++ utilizes the lightweight modified physical page allocator to better take
advantage of the underlying hardware. Furthermore, modifying the OS is a minor modification relative to
designing and adopting new hardware. As such, seeing as AMNT (or any other secure memory implementa-
tion) requires acquiring new hardware, the use of the OS modification is no more or less likely than the use
of this novel hardware.

In Linux, allocating physical memory is a distinct procedure from allocating memory at the application
level. Theoretically, cross-page locality may be unlikely given that physical pages will be allocated according
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to a binary buddy allocation scheme and where “random” pages are reclaimed by the OS over time. This
allocation makes it difficult to reason about where two virtual pages are in physical memory relative to each
other.

In order to further increase in-memory physical locality, this approach modifies the buddy allocation
from the Linux operating system [158]. This modified OS achieves this locality by reordering the free area
to have the chunks within the most common free subtree region at the head of the linked list. Physical pages
are allocated from a data structure called free_areas (i.e., an array of linked lists), where each linked list
is composed of “chunks” of physical memory. The size of each chunk depends on the index of the linked list
in the array (e.g., chunks in a linked list at index 0 of the free_area are 20 pages; chunks at index 1 are
21 pages). When an allocation request for a single page is received, the physical page allocator fetches the
first item from the free_area linked list at index 0, and returns it to the application. When the linked list
at index i is empty, and the OS needs to allocate a physical page, it will attempt to find a chunk at index
i+ 1. If it finds a chunk at i+ 1, it splits that chunk into two chunks of size 2i pages and returns one to be
allocated while adding the other one to the linked list at index i.

In the modified buddy allocator, the linked list structure is modified to prioritize chunks that are physi-
cally close to one another and placing these at the head of the linked list. As physical memory is reclaimed
by the OS, it attempts to add chunks to the linked list at the appropriate index of the free_area depending
on the chunk size. In the AMNT++ modification, the linked list is reordered to place chunks within the
subtree region at the head of the linked list. This approach makes each individual allocation as fast as the
standard physical allocator by taking the restructuring of the linked list out of the critical path of a physical
allocation.

The AMNT++ restructuring function is called during the OS physical page reclamation procedure,
leaving it out of the critical path of a page allocation. The restructuring function first scans each linked
list to count how many chunks fall under each subtree region. When the OS finishes scanning the list, it
selects the region with the greatest number of chunks (the subtree region with the most free chunks) and
then moves all the chunks for that region to the front of a temporary biased linked list (not in the free_area
struct). Once the OS is done with the restructuring, the OS replaces the linked list with the new biased
version. While the restructuring of the list is expensive, its infrequent occurrence largely amortizes its cost.
The OS tracks the number of chunks that fall within that region; when the number of allocations matches
the number of existing chunks in that region, the restructuring procedure is triggered (during reclamation).

The design decision to bias the allocator towards physical pages at the granularity of subtree regions
is intentional. The AMNT++ protocol biases the free_list towards pages in the subtree region, so that
the OS does not have to perform these exhaustive searches when allocating pages. Given that the locality
of interest is in terms of the integrity tree nodes coverage (e.g. at level 3 the coverage is 128MB for an
8GB memory and scales with increased memory size), achieving this locality is a reasonable task, even in
a fragmented system. As a result, the benefit of AMNT++ is high without being overly intrusive on the
execution of the OS and application. For example, the OS should not impede the applications from allocating
pages when pages in the fast subtree are free, but not at the head of the free_list.
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Security Configuration
BMT 8-ary integrity nodes

64-ary counters
Metadata Cache 64kB, 2-cycle latency

AMNT 64 writes per interval
Subtree Level: 3, 768 bit history
buffer, 128 bit dirty path bitmap

DDR-based PCM Configuration
Capacity 8GB PCM
Latency 305ns read [121], 391ns write [107]

Table 5.1: AMNT Configuration for Evaluation.

5.7 Evaluation
This section first evaluates AMNT on the PARSEC benchmark suite [31] version 3.0 with the simlarge
inputs in gem5 [32], a cycle accurate processor simulator. The processor configuration includes a single core
with a 32kB data L1 cache, a 48kB instruction L1 cache and 1MB L2 cache. The simulator is configured
with a processor that uses intentionally small on-chip caches to stress the memory system and show the
overheads of the secure memory hardware. The memory system configuration is shown in Table 5.1. The
secure memory hardware includes a 64kB metadata cache with an 8-level BMT to remain consistent with
Intel SGX’s configuration [103].

This evaluation uses PARSEC as the primary means of evaluation due to its diversity of workloads and
labeling of the beginning and end of the region of interest. The latter is important—determining the region of
interest in benchmark suites without labeled regions of interest is typically done by running a profiling tool,
like SimPoint [200]. These tools determine the region of interest based on microarchitectural characteristics
of the workload, and the application is run from this point for a set number of instructions. However,
this work cannot compare AMNT and AMNT++ using this methodology as the modified OS results in a
different number of instructions, requiring different points in the program to execute the same region of the
application.

The evaluation consistently compares the proposed approaches (AMNT and AMNT++) against the leaf
metadata policy and the strict persistence policy. In addition, it also compares the proposed approaches
against various protocols proposed in the literature, anubis and bmf, which are implemented based on their
design descriptions [310, 80]. Results labeled as amnt show the proposed protocol without the modified
operating system, and amnt++ show AMNT with the modified operating system.

5.7.1 Single Program Analysis

On average, AMNT has a 16% performance overhead relative to the volatile secure memory scheme and
AMNT++ has a 10% performance overhead. Fig. 5.3 shows the cycles for each configuration normalized to
the volatile secure memory results. Leaf and strict persistence have 8% and 2.39× performance overhead
respectively. AMNT effectively negotiates the trade-off between leaf and strict persistence, achieving its
design goal of having the near-leaf performance overhead.

On the other hand, Anubis [310] largely benefits from leaf persistence, but incurs a slow-path case on a
metadata cache miss. For workloads that have bad metadata cache efficacy (i.e., canneal), Anubis results
in large performance overhead, 2.4× compared to the volatile secure memory system. That is, Anubis is
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predicated on the assumption that the metadata cache exhibits strong locality, but in canneal has 30.4%
metadata cache hit rate. In contrast, AMNT’s performance is directly dependent on the application’s spatial
locality, as opposed to cache efficacy, and as a result is able to lower canneal’s overhead down to less than
0.1%.

5.7.2 Multiprogram Analysis
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Figure 5.4: Normalized cycles in multiprogram PAR-
SEC workloads.

As described in Section 5.6, running a single pro-
gram may not fully stress the underlying protocol
in AMNT as the single program’s address space will
be the only one exhibiting locality in memory. Thus,
this section uses multiprogram workloads to approx-
imate real-world behaviors in which the memory sys-
tem is subject to the interference due to the interac-
tion of multiple processes. In order to perform such
an evaluation, the evaluation configures the envi-
ronment with combinations of programs with tem-
porarily similar regions of interest from the PAR-
SEC benchmark suite. The multiprogram evalua-
tion methodology is consistent with prior work [266]. To choose the pairs of multiprogram workloads, the
benchmarks whose region of interest appeared at the most similar times are selected to ensure that the
regions of interest of each benchmark is evaluated in parallel. These workloads are: bodytrack and fluidan-
imate, swaptions and streamcluster, and x264 and freqmine. To ensure that the evaluation always covers
both benchmarks’ regions of interest, the analysis starts measuring when the second benchmark reaches the
beginning of its region of interest, and stop the simulation when the first benchmark reaches the end of
its region of interest. The presented results come from running both region of interests in parallel. The
simulator configuration for the multiprogram analysis includes two cores, each with a private 32kB data L1
cache, 48kB instruction L1 cache, and 128kB L2 cache. Both cores share a 1MB L3 cache.

AMNT++ is effective at improving AMNT performance. Fig. 5.4 shows the performance normalized
to the volatile secure memory setting for all the approaches for the three pairs of multiprogram workloads
(including prior work and AMNT and AMNT++). AMNT++ counteracts the multiprogram behavior that
impacts the efficacy of AMNT. For example, the bodytrack and fluidanimate workload display an example
when applications may impact their mutual spatial locality. In this scenario, AMNT++ can make a difference
by reordering the physical pages accordingly and increasing subtree hit rate from 91% to 97%. As a result,
AMNT++ performance overhead is reduced from 8% (AMNT) to less than .1% compared to leaf persistence
(the best performing approach). Note that the performance overhead of AMNT in the single program
experiments for bodytrack and fluidanimate are less than .1% and 2.1% respectively.

The swaptions and streamcluster workload and the x264 and freqmine workload are not memory inten-
sive, and as a result the performance overhead is negligible across both approaches. One could imagine a
theoretically adversarial case in which the subtree bounces back and forth between subtree regions, especially
with distinct address spaces for multiple processes. This evaluation finds that these cases do not occur in
practice. In the study of single program workloads, the analysis finds that the subtree root moves 0.3% of
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data accesses on average (3 subtree root movements for every 1000 data memory accesses). In multiprogram
workloads, this occurs 0.1% of data accesses, which implies no significant difference in memory behavior.

5.7.3 Subtree Sensitivity Analysis

As described in Section 5.5, the AMNT subtree level can be configured in the BIOS so that the hardware can
be modified for varying workload characteristics. To build an intuition about these workload characteristics,
this evaluation presents a sensitivity study of storing the subtree at varying levels under the multiprogram
workloads. As these configurations are intentionally designed to constrain the efficacy of AMNT, this sec-
tion demonstrates the efficacy of AMNT++ at changing application behavior to improve subtree hit rates.
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Figure 5.5: Subtree hit rates for multiprogram PAR-
SEC workloads varying AMNT subtree level.

Fig. 5.6 shows performance impact of varying the
AMNT subtree root level with and without the mod-
ified operating system (AMNT++ and AMNT), and
Fig. 5.5 shows the subtree hit rates for the same
configurations. As the subtree root level increases
(i.e., moves closer towards the leaves), it protects
less data thereby constraining its efficacy. For ex-
ample, in the bodytrack and fluidanimate workload,
the subtree hit rate improves by at least 5% when
the subtree root is placed between levels 3 and 7
with AMNT++ compared to AMNT. On the other
hand, workloads like swaptions and streamcluster and x264 and freqmine, the runtime performance is not
bound by the secure memory hardware and as a result the performance impact is less evident. This result
demonstrates that AMNT++ is able to improve the hot region tracking of the underlying hardware without
needing to complicate the hardware in a multiprogram environment.

5.7.4 The Cost of AMNT++

In traditional systems evaluation, modifying the operating system can be viewed as an extreme measure
as it impacts all applications running on the system, and may incur unavoidable overheads throughout the
system. Given that AMNT requires new hardware, the concern over potential adoption is less pertinent, as
using a modified operating system on a new system is less burdensome. This evaluation uses the PARSEC
multiprogram workloads with and without the operating systems modifications in AMNT++ to evaluate
the runtime overhead of the modified operating system and quantify how intrusive it is. To perform this
evaluation, this work uses the single program and multiprogram configurations where appropriate.

Table 5.2 describes the impact of the modified OS on application behavior. The normalized performance
column reflects the number of cycles to run the multiprogram workload with the modified OS over the number
of cycles with the unmodified OS. The impact of the modified OS is negligible on the overall performance.
This result is due to the fact that the physical reclamation of pages is an infrequent operation, and the
modifications are mostly transparent to the progress of the application.

On the other hand, the number of additional instructions of the OS modification is relatively small.
The second column of Table 5.2, the instruction overhead, reflects the additional number of instructions in
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the modified OS compared to the unmodified OS. On average across the PARSEC benchmark suite, the
instruction overhead of AMNT++ is 1.96%.

Given that the number of additional instructions are small and the impact on performance overhead is
small, any speedup of AMNT++ is due to the increased locality of the application, improving the overall
efficacy of the on-chip cache hierarchy. The reason for the additional instructions not impacting performance
is that the reclamation process is typically off the critical path (i.e., when physical pages are reclaimed) by
design.

5.7.5 Multithread Analysis

This evaluation of AMNT is performed with the SPEC CPU 2017 benchmark suite [40] to perform multi-
threaded analysis consistent with prior art [310, 294, 8, 82, 23]. The evaluation uses the speed benchmarks
with ref inputs, and it fast-forwards to a region of interest as determined by SimPoint [200] in the benchmark
before simulating 500 million instructions. As done in prior work, this evaluation uses a four core simulation
with a 32kB data L1 cache, 48kB instruction L1 cache, 512kB L2 cache, and 8MB L3 cache.

Fig. 5.7 shows the normalized cycles of the SPEC CPU 2017 benchmarks over a volatile secure memory
system which does not account for the persistent state of the metadata. AMNT reduces runtime overhead
by as much as 41% and by 13% on average compared to the state-of-the-art, Anubis [310]. Osiris [294] (not
shown on the figure) results in about the same runtime overhead as leaf persistence as its design prioritizes
runtime over recovery time. However, Osiris’ recovery time degrades as memory capacities increase, making
it a bad option for cloud service providers who are unable to withstand hours of recovery time for the large
capacities of SCM typically used in datacenters. Compared to the leaf and strict persistence baselines,
AMNT has a runtime overhead of less than 2% compared to leaf persistence, and up to an 8× reduction in
overhead relative to strict persistence (shown in Fig. 5.7).

AMNT has the biggest impact on write-intensive applications. Write-intensive workloads (e.g., xz, lbm,
deepsjeng) suffer from the strictest persistent mechanisms, as they place writes on the critical path of applica-
tion execution. For xz, the most write memory intensive benchmark, AMNT results in 32% runtime overhead
while Anubis has 41% overhead and BMF has a 7× overhead. AMNT reduces the runtime overhead as it
uses leaf persistence semantics on the hot regions of the programs, while keeping the recovery time bounded
to a predefined amount. Read-intensive applications are largely optimized by volatile on-chip caches and
are unaffected by the metadata persistence model. However, for mechanisms that add complex calculation
for memory reads (such as Anubis and BMF), the persistence model still adds to the runtime overhead. For
example, AMNT exhibits negligible overhead versus leaf in cactuBSSN and mcf because they are mostly read
memory-intensive benchmarks. Yet, Anubis and BMF both have significant overhead. Anubis suffers from
costly metadata cache misses and BMF simply resembles the behavior of the strict performance protocol
resulting in high performance overhead. In contrast, AMNT improves performance overhead as it optimizes
metadata cache behavior.

Table 5.2: Impact of the modified operating system in multiprogram workloads.

Normalized Performance Instruction Overhead
body and fluid 0.992 1.004
swap and stream 0.967 1.021
x264 and freq 1.013 1.01
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Table 5.3: Hardware overheads of the state-of-the-art for a 64kB metadata cache. Note that BMF overheads
is metadata cache size dependent and it requires an additional 6 bits of volatile capacity per cache line.

NV On-Chip Vol. On-Chip In-Memory
BMF 4 kB 768 B -
Anubis 64 B 37 kB 37 kB

AMNT 64 B 96 B -

5.7.6 Hardware Overhead

Spatial overheads for secure memory should be minimized as on-chip area is in high demand for various
hardware optimizations across a multitude of workloads. For example, if secure memory hardware occupies
on-chip space for the LLC, then the application will incur more LLC misses and be further bound by secure
memory. Furthermore, applications are becoming more memory intensive, placing more emphasis on the
importance of caching values in the larger components of the chip (i.e. LLC). Finally, trends in secure
memory have moved towards reducing the in-memory spatial overhead of secure memory, so storing more
security metadata in memory is undesirable [291, 219, 251].

This evaluation compares the on-chip volatile and non-volatile overheads separately as these may be
composed of different technologies (SRAM vs. Flash). The hardware area overheads for Anubis, BMF and
AMNT are listed in Table 5.3. This work assumes that the on-chip root of the BMT must reside in on-chip
Flash to conform to the threat model which keeps the root on-chip at all times for all three mechanisms.
In BMF, the non-volatile on-chip space consists of an additional non-volatile metadata cache used to store
the subtree roots (4kB by default in that work). The volatile on-chip space requires an additional 6 bits per
cache line for the frequency counters in addition to the metadata cache. For a 64kB metadata cache, which
holds 1024 64B cache lines, the frequency counters amount to 768B.

In Anubis, the non-volatile on-chip space is occupied by the additional root required to track the shadow
Merkle Tree (64B). The volatile on-chip space is composed of both the metadata cache and, optionally, the
shadow MT cache (37kB).

Area overhead in both of these prior works is a function of memory size. In BMF, a bigger metadata
cache will result in more space for frequency counters, or new workloads might demand more subtrees to be
tracked for performance. The implementation of Anubis include the shadow table in a distinct on-chip cache
for a 64kB metadata cache to remain consistent with [103], and it models the non-volatile metadata cache in
BMF as a distinct on-chip cache with a non-volatile metadata cache proportional to the volatile metadata
cache size (4kB).

In contrast, one of AMNT’s goals is to limit the additional hardware components both on-chip and
in-memory. Like Anubis, AMNT has an additional non-volatile register on-chip to track the root of the
fast subtree. The volatile on-chip space includes a 768-bit history buffer, and the metadata cache. The
37kB volatile shadow cache in Anubis is much bigger in capacity than the volatile history buffer required
for AMNT. The 4kB non-volatile subtree root cache in BMF requires a significantly greater non-volatile
on-chip resource compared to the single non-volatile on-chip register required in AMNT to store the subtree
root. A direct consequence of having a software and hardware co-design, such as AMNT++, is that the
resulting area requirement is low. On-chip area is in high demand for various hardware optimizations across
a multitude of workloads, so area overhead of this approach is minimized. As such, AMNT achieves its
design goal of limiting additional hardware components on-chip and in memory. In addition, as discussed
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Table 5.4: Recovery times (in ms) for the different protocols as a function of memory size.

2.00TB 16.00TB 128.00TB BMT stale %
leaf 6,222.21 49,777.78 398,222.21 100%
strict 0 0 0 0%
Anubis 1.30 1.30 1.30 fixed
Osiris 50,666.67 405,333.32 3,242,666.64 100%*
BMF 0 0 0 0%

AMNT L2 777.77 6,222.21 49,777.78 12.5%
AMNT L3 97.22 777.77 6,222.21 1.56%
AMNT L4 12.15 97.22 777.77 0.2%

in the next section, AMNT’s performance is agnostic to other features, such as metadata cache size and
memory size.

5.7.7 Recovery

The recovery process requires both the fetch of counter values from memory and the computation of the
hashes of data-independent regions. For example, nodes within a level (i.e., siblings or cousins in a BMT)
are data independent, however since a parent node cannot be computed without knowing the value of its
children, parents and children have a data dependent relationship in hash recomputation. To relieve this data
dependency, the re-computed hash values for a level are written back to memory before the next level can
start the hash computation. Seeing as the hash computation is both fast and pipelined, this work assumes
that the recovery time is bound by the memory bandwidth. Note that the split of reads and writes in the
recovery workload is a ratio of 8:1 (reads:writes) as eight children are to be fetched in order to compute a
parent hash (which will be written back to memory). A single Optane DIMM supports around 4 GB/s of
total bandwidth when subjected to this mixed read/write sequential workload [117], of which around half of
this bandwidth (2 GB/s) is dedicated to reads. Assuming a six-channel machine [121, 107], this provides a
total read bandwidth, at recovery, of 12 GB/s to memory, which is the essential performance bottleneck for
recovery. This work uses this bandwidth to generate the data in Table 5.4, which shows the time it takes to
recover each of the baseline and state-of-the-art configurations after a system failure.

Unlike prior approaches, recovery time in AMNT scales with the level in which the subtree root is placed
and is reconfigurable. For example, with the AMNT subtree root configured at level 3 of the BMT, it has a
slower recovery time than Anubis [310] (as shown in Fig. 5.4). Although slower than Anubis [310], recovery
times are still reasonable and much faster than other state-of-the-art alternatives. In the event that a service
provider cannot tolerate long periods of downtime, AMNT can be re-configured with a subtree root closer
to the leaves. For instance, with the subtree root configured at level 4 for a 2TB memory the recovery time
is 0.01 seconds (see Table 5.4).

5.8 Related Work
Other works that have proposed using a fast subtree can be classified into two works that leverage indirec-
tion [9, 278] and those that use data addresses to determine its membership or non-membership in the fast
subtree [209]. AMNT uses data addresses to determine membership in the fast subtree protocol. This design
choice is an advantage over approaches that use indirection for two reasons: (1) approaches that leverage
indirection cannot begin until some information is fetched that determines which authentication protocol to
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use, and (2) the logic controlling this indirection leads to significant on-chip area and in-memory storage
overheads (additional caches, in-memory queues, etc. [107, 210]). Assure describes a protocol where a single
subtree is tracked to reduce the authentication and update path length for frequently accessed data [209].
However, this work does not target multiple persistence strategies. AMNT intentionally addresses this
non-trivial question, and results in performance benefits.

5.9 Conclusion
Storage class memory (SCM) offers high density, non-volatile storage with dramatically faster speeds than
traditional storage systems. However, this non-volatility creates new security challenges. This chapter
presents A Midsummer Night’s Tree (AMNT), a novel hybrid persistent Bonsai Merkle Tree (BMT) protocol
for integrity-protected non-volatile SCM. AMNT improves performance overhead by up to 41% compared
to the state-of-the-art approach while providing fast and configurable recovery times that are a function of
the level of the subtree root rather than the memory size.

AMNT provides a strong basis for considering how, by writing software directly for some architecture,
performance may be globally benefited. However, AMNT faces certain limitations predicated on this feature.
1⃝ AMNT++ will struggle to handle cases of fragmentation. If there are few physical addresses available
to allocate, then it is unlikely that a biased allocation procedure will benefit performance. 2⃝ Though out
of scope of the threat model in this work, the modified operating system introduces slow paths through
normal execution that an adversary can hijack to perform denial-of-service attacks. This work argues that
an adversary within this threat model would be able to perform such an attack anyways, but the new
operating system provides an adversary an additional surface to do so. 3⃝ It is worth noting that the issue of
long recovery is only an issue at extraordinarily large capacities. As a result, it may be reasonable in many
commodity cases to use a leaf persistence scheme to maintain metadata or even a further relaxed scheme
like Osiris [294]. Prior work indicates that the issue of recovery may be a bigger problem than it is given
unrealistic assumptions about the recovery workload in practice (i.e., Anubis [310] makes an unsupported
claim that it takes 100ns to recover a node without considering parallel work). The analysis in Table 5.4
better characterizes this problem.
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Chapter 6

CAPULET: Cache Pooling Metadata
Caches in Secure Disaggregated
Memory Systems

6.1 Problem Statement
As described in Chapter 5, an emerging problem in modern workloads is the inability of local memory to meet
the capacity and performance demands of modern workloads. This chapter is predicated on disaggregated
memory, an alternative emerging technology to address this problem. Disaggregated memory architectures
architectures (e.g., CXL [62], NVIDIA’s NVLink [195], and UALink [262]) describe a system through which
memory devices are connected to one or more processors via I/O. This configuration enables a processing
element to distribute its memory accesses across memory devices to avoid saturating the available bandwidth
of an individual device. As such, these memory systems are attractive for cloud deployment [150, 30, 95, 153]
given their ability to implement local memory expansion [5, 127, 245], realize cross-host memory pooling [150,
92, 276, 11], and distributed shared memory [304, 254, 289, 157]. Unlike NVMs, which promise a denser
memory to better utilize the local capacity of a motherboard, a disaggregated memory system promises
scalability via remote, I/O attached memory devices. As a result, disaggregated memory systems are not
bound to the limitations imposed by a motherboard, such as capacity restrictions due to a limited number
of DIMM slots. These memory systems are attractive for cloud deployment [150, 30, 95, 153] given their
ability to implement local memory expansion [5, 127, 245], realize cross-host memory pooling [150, 92, 276,
11], and distributed shared memory [304, 254, 289, 157].

A disaggregated memory system also allows an application to exploit higher bandwidth capacity than
what can be afforded by local memory. At a high level, the remote address space is exposed to the operating
system, but the management of these addresses is handled by the architecture. The process of utilizing
and managing a disaggregated memory system is detailed in Sec. 6.3. Therefore, the architecture can
partition an address space across memory devices to avoid saturating the available bandwidth of an individual
device. Instead, the ideal peak memory bandwidth of a disaggregated memory system is the minimum of
the interconnect bandwidth and the sum of the device bandwidths.

74
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Unfortunately, the memory vulnerabilities described in Chapter 2 are a function of the device technology
regardless of whether they are deployed locally or remotely. What’s worse, many proposed disaggregated
memory system deployments consider schemes in which multiple processing hosts will share memory devices.
This increases the exploitable surface for an adversary. Therefore, protecting the state of data in a remote
memory device remains a pertinent problem. Unlike in a local memory, a disaggregated memory system
does not give a host processor a complete view of the memory system. However, the processor must still
authenticate untrusted data prior to loading it on-chip. Otherwise, the host processor must expand its
trusted computing base to include some other authenticating entity. The implications of this are described
in Sec. 6.4. As a result, key to the issue of securing a disaggregated memory system is the issue of managing
the metadata associated with a processor’s remote memory.

6.2 Introduction
Given the presence of these attacks, cloud providers must deploy secure hardware devices so that developers
can reason about the safety of their deployed applications. In particular, the presence of the aforemen-
tioned memory vulnerabilities provides strong motivation for the development and deployment of secure
memory [243, 291, 93]. As described in Chapters 2 and 3, performance is a critical problem for secure
memory devices [74, 106, 164]. Chapter 3, explores the scalability of the metadata cache to optimize the
secure memory protocol. The benefits of the cache are twofold: 1⃝ security metadata stored in the cache can
be accessed at lower latency than those in memory, and 2⃝ on-chip caches are not susceptible to the same
physical attacks as off-chip memory devices, so accesses that hit in the cache can serve as roots of trust for
authentication without needing to fetch metadata all the way up to the Merkle tree root, significantly re-
ducing bandwidth pressure on the underlying memory device. These two benefits are substantial, and using
a metadata cache has been demonstrated as offering orders of magnitude improvements in runtime [257].
Unfortunately, even with the metadata cache, secure memory has been demonstrated to be too slow in
practice and its optimization remains an ongoing, high-priority issue in academia and industry [116, 145, 7,
303, 22].

Note that simply increasing the size of the metadata cache to improve utilization is not scalable. Instead,
this chapter considers new ways of distributing the metadata across the memory system to leverage the
memory system fabric to achieve a similar effect. Note, Chapter 3 explores a means of modifying the
structure of the integrity tree to promote the benefits of the cache without being subject to the cache
itself. However, this approach is complex, requires additional metadata, and incurs periods of blocking
pending authentications to restructure the tree shape. Furthermore, research concerning memory security
for disaggregated memory systems is in its infancy. While early proposals have envisioned storing security
metadata in remote memory, these designs do not consider secure memory placement and management. This
is a non-trivial detail that requires more detailed investigation. This chapter contributes a detailed design
of secure memory with disaggregated memory.

This chapter sets out to accomplish two goals: 1) describe a secure memory model suitable for disaggre-
gated memory systems, and 2) design a new protocol that leverages the interconnect fabric of disaggregated
memories to optimize secure memory. Note that secure memory is largely optimized by the security metadata
cache. Improvements in metadata cache utilization equate to performance improvements.

Achieving the first goal requires defining how a processor and a remote memory may coordinate the
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maintenance of secure memory metadata. Doing so is non-trivial: candidate schemes face limitations in
performance and correctness. This chapter proposes an efficient scheme to store secure memory metadata,
where a memory device in a disaggregated memory system maintains the security metadata associated with
its addresses that a host can later use for authentication. In addition, a host utilizing the memory system
may cache authenticated metadata associated with its remote data in its metadata cache. This scheme
reduces the work required for future authentications of remote data.

To achieve the second goal, this chapter proposes CAPULET, a protocol that implements cache pooling
in underlying external disaggregated memory devices. CAPULET improves the metadata cache utilization
of a host in a disaggregated memory system by storing evicted values in metadata caches elsewhere in the
memory. To do so, this chapter introduces cache pooling, a novel abstraction for caches to coordinate with
each other in a disaggregated memory system. Much like a memory pool, a cache pool allows a local cache to
expand its capacity by viewing other devices in the system as members of an abstract pool. From this view,
the cache can optimistically offload evicted values to the pool and later query the pool for missed values.
This expands the “effective’’ capacity of the individual device, which is of particular importance when the
utilization of the security metadata cache is challenged by the strain of the workload or disaggregated memory
protocol. By taking this approach, CAPULET improves the efficiency of the secure memory protocol while
upholding the design goals of not relying on large local security metadata caches or complicating the logic
to cache it. CAPULET can improve secure memory performance by 15% on average and by as much as 4×
for high performance computing (HPC) workloads.

This chapter makes the following contributions:

1. It provides an overview of various protocols to implement secure memory in a disaggregated memory
system.

2. It introduces cache pooling, a novel abstraction model to reason about memory device caches in disag-
gregated memory systems.

3. It demonstrates the advantages of cache pooling by evaluating the design on two disaggregated memory
system deployments: local and in the cloud.

6.3 Background

6.3.1 Disaggregated Memory

Application demands of memory are ever increasing. To account for the increased demands in capacity
and bandwidth, disaggregated memory technologies (i.e., CXL [62], NVLink [195], UALink [262], etc.) have
emerged. At a high level, these technologies describe an I/O protocol that allow memory devices to be
attached to one or more hosts. For simplicity, this discussion focuses on the Compute Express Link (CXL)
interconnect as its standard is open source by design1. The communication system enables high global
memory bandwidth with relatively low latency accesses due to the underlying interface (e.g., CXL uses
PCIe [127], whose sixth generation supports 64GT/s per lane [229]). By taking this approach, disaggregated
memories are highly flexible in their deployment and can be used to implement a variety of memory systems.

1This chapter uses the terms disaggregated memory, remote memory system, and CXL interchangeably.
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These memory systems can be used to expand the capacity of a single computing host [5], dynamically
allocate remote memory resources across several hosts [138, 92, 11, 130, 30, 150], and/or enable remote
shared memory among several hosts [304, 254, 289].

A sample configuration of a CXL architecture is illustrated in Fig. 6.1. Seeing as CXL is a PCIe-based
protocol, an application interacts with a CXL device through one of several proposed software interfaces.
When a root port on the system bus is established for a CXL-capable device, a kernel driver queries the
remote device for its base address and internal memory size. Note that in the provided example, the root
port (i.e., a CXL card with a CXL controller [161]) may be attached directly to the end point of a CXL
memory device or to a CXL switch. In either case, the querying procedure on connection establishment is
the same. This allows the operating system to maintain a coherent view of the global physical address space.
The operating system may maintain remote memory mappings in an mmap-able file associated with a device
file [92] or remote memory may be accessible to an application through the zNUMA interface [150]. In both
examples, the application is able to interact with memory in a remote CXL device through its virtual address
space while the discovery and maintenance of remote memory is maintained by the operating system.

This abstraction allows the host to simplify its view of remote memory. Suppose Host A implements
remote CXL memory through an mmap interface to device files. In this case, there would be a virtual
memory space for each of the root ports: one interfaces directly with the local memory expansion end
point and one with the CXL switch coordinating the memory pool. This approach allows the application to
explicitly allocate objects and data to a particular CXL device or to interact with “remote” memory in a
device-agnostic manner.

To request a virtual address that is mapped to a remote memory, the application contacts the operating
system to translate the address. Upon completing the translation, the operating system makes a request
of the associated device. To the host processor, this address will appear as a physical address outside of
its memory address range. The system bus directs the request to the appropriate root port for the address
range containing the request. Then, the appropriate CXL request will be sent to the connected peer to be
managed by the remote memory system.

A natural application of this protocol and technology is towards memory expansion. That is, if a host’s
local memory capacity is restricted (i.e., due to limited DIMM capacity on the motherboard), the host may
choose to leverage external memory devices via CXL to expand its capacity. These remote memories may
be attached to a CXL card directly or via a CXL switch if the number of physical ports is limited. Direct
connection between root port and end point requires lower latency than CXL switch (55ns point-to-point
latency as compared to 270ns [150]). Given that the remote memory is I/O attached, the maximum capacity
of remote CXL memory is theoretically unbounded.

Beyond local memory expansion, memory pooling has been proposed as an application of disaggregated
memory systems. A memory pool [61, 194, 68, 150, 130, 138] describes an arrangement of memory devices
that are accessible to a variety of hosts without their explicit knowledge of which device they are accessing.
That is, if a host wants to access some “physical address” that reside in a memory pool, the hardware
in the disaggregated system (i.e., a CXL switch) manages any additional mapping of that address to the
appropriate device [113]. Memory pooling enables the hardware to implement properties like replication and
data partitioning so as to minimize application complexity. Cloud providers can leverage memory pooling
architectures to elastically improve utilization of memory resources, such that stranded memory can be
reallocated to other processes (i.e., serverless workloads) [150, 148].
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Figure 6.1: Sample CXL architecture proposed in [92]. Hosts maintain root ports (RP) on their system bus
that attach to CXL end points (EP) or user-side ports (USP) in a CXL switch. A CXL switch may attach to
a CXL device EP via a data-side port (DSP). Memory expansion can be implemented via direct connection
between host RP and a CXL EP. Memory pooling may be implemented with a routing table in the CXL
Switch.

CXL hardware can manage the mapping from a host’s view of a physical address to an address in a
device. CXL has been proposed as a means for multiple hosts to use remote memory as a distributed shared
memory [254, 304, 289]. The CXL switch allows multiple hosts to access the same location in a remote
memory device. Doing so allows an application running on multiple hosts (i.e., a distributed system) to use
memory as a point of coordination as opposed to coordinating via the network.

6.3.2 Related Work

There have been several proposals for how to secure memory in a disaggregated environment in prior litera-
ture. In particular, prior art has considered how to build a single root of trust over all addresses on remote
devices [10, 79, 233]. All remote values are considered untrusted, and any memory controller is responsible
for protecting the state of all other data. In this scheme, the key challenge is ensuring that the root stored
on any trusted processing element can maintain a coherent view of the true root of the entire state of remote
data. Processing elements must coordinate in order to verify that legitimate memory operations from other
hosts are reflected in the roots of trust in all other processing elements.

6.4 Metadata Placement
To implement secure memory for a disaggregated memory system, data in both the host local memory and
the remote memory system are subject to corruption. When the host is tasked with authenticating accesses
to data in any memory device in the system, the placement of the authentication metadata is non-trivial.
This section explores the potential implications of several secure memory metadata placement schemes.
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6.4.1 Maintaining Remote Metadata Locally

A processor must authenticate all data as it is loaded on-chip. One possible scheme to enable this functionality
is for all metadata to be placed in the local memory device regardless of whether the associated data is for
a local address or for a remote address. This scheme is presented in Fig. 6.2. Whenever an access is made
to a remote address, requests to local memory devices are made for its associated metadata. When data
is returned from the disaggregated memory system, it can be authenticated with the root of trust (i.e., the
BMT root or via metadata cache hit) associated with the relevant processing element.

Figure 6.2: All metadata stored in the
host’s local memory.

Challenge 1. This organization of security metadata faces the is-
sue that the capacity of remote addresses is theoretically unbounded.
Given that each piece of data in memory has its own associated meta-
data, the size of the metadata is similarly potentially unbounded.
Storing all metadata addresses in local memory is impossible if the
global metadata size (i.e., metadata for local and remote memory)
exceeds the capacity of local memory. Even without exceeding the
capacity, storing all metadata in local memory leads to subopti-
mal performance. Every byte reserved for the storage of metadata
comes at the cost of space for application data. When writing an ap-
plication for a tiered memory system (i.e., disaggregated memory),
accessing local data should be prioritized as much as possible [36].
If a significant percentage of local memory is reserved for metadata,
then it is difficult to implement high performance applications with disaggregated memory.

Challenge 2. Another practical challenge in realizing this scheme is the amount of space in the local
memory device that must be reserved to maintain the security metadata. The availability of remote memory
in a disaggregated memory system is dynamic. The operating system maps remote memory across the disag-
gregated memory system to its visible address space at runtime via the device driver managing the interface
with the memory system. This may look like the host platform having a CXL card attached to its PCIe pins
with three occupied ports and one available port. In such a scenario, a new remote memory device can be
attached to an I/O port, and the operating system has to update its mapping accordingly. Alternatively, the
disaggregated memory system could implement a memory pool, and the pool decides to dynamically allocate
additional capacity to a host (e.g., in a serverless manner [150]). However, because metadata is maintained
in local memory, the amount of space in local memory reserved for security metadata must similarly increase
dynamically to protect the newly visible remote address space. The dynamic allocation of security metadata
presents its own challenges, such as needing to steal memory from the OS or other running processes in
order to have the necessary space for the metadata. Modern OSes have been designed specifically to avoid
memory stealing, complicating the interaction between the OS and the hardware.

6.4.2 Maintaining Remote Metadata Remotely

Storing all metadata locally leads to two key takeaways: 1⃝ such a scheme reserves an unreasonable percentage
of the local memory with security metadata, and 2⃝ such a scheme does not easily apply to a dynamic
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disaggregated memory system (such as a serverless memory pool). To account for these limitations, an
alternative scheme can store all security metadata in the remote memory where its associated data is stored:
either local or remote. In a disaggregated memory system, the host processor can view remote memory as
a single address range regardless if it is a collection of space across multiple remote devices. This enables
the host to view security metadata as belonging either to the local or remote group. The host processor
needs one additional on-chip register to store the remote memory integrity tree root, in addition to the local
integrity tree root, to establish the root of trust for the remote memory. This scheme is depicted in Fig. 6.3.

Figure 6.3: Each device stores its own
metadata.

In this scheme, metadata for remote data is partitioned across
the remote region. When performing the attestation to initialize
the address space, the host instructs the remote memory system to
set up the associated security metadata in remote memory. Seeing
as the host does not have a view of the remote devices, it is up
to the remote memory system (i.e., a CXL controller or switch) to
maintain the mapping from remote data to its associated metadata
and the metadata state. When the host makes a request to update
some remote data, the remote memory system updates the state of
the associated metadata to remain consistent with the data and the
host maintains the remote root.

The host processor is still responsible for authenticating the re-
mote data with the remotely stored metadata. When the host processor makes a request for data stored in
a remote memory device, the host processor will issue the data request and the corresponding requests for
metadata to the fabric of the memory system. The remote memory system will issue the requests according
to how the addresses are mapped in the system. Once the host processor starts receiving the corresponding
metadata, it can begin the data authentication process against the root of trust for remote memory just as
if the data were stored in local memory.

The metadata associated with the remote data is stored across the remote memory devices. With this
approach, the amount of security metadata is a function of the capacity of the protected memory, which
resolves the limitation 1⃝ of the approach in Section 6.4.1. The metadata associated with remote data
can be placed by the remote memory device in this threat model so long as authentication is ultimately
performed by the host. The remote node can still communicate the data and metadata back to the host
even though it is not part of the trusted computing base, thanks to the additional host on-chip integrity tree
root. However, this approach still suffers limitation 2⃝ from the prior approach (Section 6.4.1). Dynamically
adding remote capacity requires initializing additional metadata for the remote data that is visible to the
root on-chip. Seeing as these behaviors are often implemented in the remote memory system transparently
to the host [150], it would be impossible for the host to update the root of its remote data state in such a
memory system. Beyond this, storing remote metadata remotely faces additional challenges.

Challenge 1. In a distributed shared memory (i.e., multiple hosts can update a shared remote address),
when another host updates the protected data it needs to communicate the changes to other sharing pro-
cessors. This metadata placement scheme requires an explicit protocol to securely account for the coherence
of the root protecting the remote data (i.e., a remote host must securely notify all other hosts sharing that
data of the new state). Without this protocol, there is no way to distinguish between malicious tampering in
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the remote data state from a legitimate update from another host making a legitimate update to the shared
memory state. The disaggregated memory system must implement some procedure for secure communication
between processors when such an update occurs.

Challenge 2. Communicating all of the metadata relevant to some remote data access to the requesting
host can come at steep performance costs. This phenomenon is well studied in the context of securing
CPU-to-GPU memory [3, 302, 301, 303, 2]. Each transmission consumes bandwidth along the interconnect
for the disaggregated memory system. This phenomenon limits the practicality of such an approach.

6.4.3 Caching Remote Metadata Locally

Figure 6.4: Remote metadata can be
cached in the host.

The challenges observed with storing the security metadata remotely
for remote data lead us to consider an optimization using commonly
understood primitives such as caching. This last approach considers
caching the remote metadata locally and discuss the potential lim-
itations of the approach. The performance limitations of the prior
approach are a function of the additional communication needed to
transfer all relevant metadata to the host for authentication. If the
host processor can cache the remote security metadata associated
with data stored in remote memory devices in its metadata cache,
this additional performance degradation can be mitigated (shown in
Fig. 6.4). Like in the traditional system, when the host has a meta-
data cache hit, it can stop traversing the integrity tree, reducing the
remote memory latency and bandwidth needs.

In this metadata placement scheme, the host checks its metadata cache state for a node in the integrity
tree path closest to the data (i.e., towards the leaves) when making a request for some remote data. Upon
finding such a node (which acts as a root of trust), the host can request only the data and integrity tree
path up to this node. Note, this is often significantly fewer requests than the full leaf-to-root path. After
this metadata is fetched from the remote memory and authenticated against the root of trust in the host,
this metadata is also deemed as trusted. Thus, authenticated metadata associated with remote data can be
placed in the host’s metadata cache to serve as roots of trust for future authentications.

Challenge 1. Much like in the prior approach, maintaining coherent metadata in this scheme is paramount.
In addition to keeping the remote root coherent in the host, all cached remote metadata must also be coherent.

Challenge 2. Space in the metadata cache is relatively limited. Exploration of Intel SGX has demonstrated
that an on-chip metadata cache may be similarly sized to an L1 data cache (64kB [103]). Given the benefits
of the metadata cache, its efficient utilization is paramount. However, caching remote metadata in the local
metadata cache may put the cache under strain and evict metadata relevant for future authentications (for
local and remote data) as a result. If metadata associated with remote data has poor utilization (i.e., exhibits
poor locality) then application performance will be further bound by the secure memory protocol.
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6.5 Design
This section describes CAPULET, a protocol to manage secure memory metadata caches in disaggregated
memory architectures. CAPULET benefits metadata caches under strain by storing security metadata
coherently in remote metadata caches in external hosts that share a disaggregated memory system. In doing
so, CAPULET addresses the restrictions imposed by the limited metadata cache capacity in a single host.
The ideas proposed in CAPULET leverage the fabric of the disaggregated memory system to facilitate the
expanded “effective” capacity of metadata caches.

6.5.1 Architecture Overview

CAPULET is built on top of a disaggregated memory system, such as CXL [62], NVLink [195], or UALink [262]
in which multiple hosts utilize a disaggregated memory system to implement remote memory. This may be
for capacity expansion, as a memory pool, or to implement a distributed shared memory. At least two of
the hosts in the system must implement secure memory with a MEE over its local memory (and by proxy
utilize a metadata cache). Hosts send memory requests to the memory system via PCIe (consistent with
the CXL standard), and the data stored on these devices is untrusted as data in a memory device is subject
to corruption. For simplicity, this work assumes that remote address ranges are static. Dynamically sized
remote memories, such as serverless memory pools, are out of scope. Upon initialization of the memory
system (i.e., during boot), the secure memory metadata is established in all devices with memory (both
hosts and remote memory devices). The hosts participating in a memory pool using remote devices perform
an initial attestation to establish a channel for secure communication during the session of interactions [171,
54]. This allows the hosts to securely communicate security metadata to remote memory devices.

This work assumes an architecture in which memory devices are only responsible for maintaining the
metadata associated with their own address space. Each underlying remote memory “owns” its address space
and bears the responsibility for responding when a request across the communication channel comes in for an
address it owns. Note, a host’s view of “remote memory” may comprise multiple physical memory devices,
so ownership of an address space is enforced by the fabric of the memory system (i.e., a CXL controller
or switch). The hosts utilizing this remote memory will not trust remote memory devices to perform any
authentication, so hosts making a request for some remote data also request the associated metadata to
authenticate its state in its own secure memory hardware. This work assumes that hosts can cache metadata
for remote data in their local cache state (the metadata placement scheme from Section 6.4.3). The host
only needs to request metadata from the remote memory up to the first metadata cache hit. To update
some remote data, the host communicates the new data state to the disaggregated memory system, which
updates the associated metadata. Seeing as CAPULET implements a tree of counters, the host updates its
trusted counter state (either the integrity tree root or an intermediate cached node) and its associated hash
locally2. When remote metadata is evicted from the host’s metadata cache, it writes it back to its remote
location (as in traditional systems).

This work makes two assumptions about the fabric of the disaggregated memory system to implement
CAPULET. First, it assumes that there are secure, private channels, through which two hosts can query each
other’s secure memory metadata caches. This secure communication between hosts can be established using

2If the host implements a BMT-based secure memory, the remote memory devices must respond to the write with the
up-to-date metadata in the path so that the host can verify that the root was updated appropriately.
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Figure 6.5: A memory pool as compared to a cache pool. In a cache pool, a cache can access the pool of
other caches while also being a member of all other pool views.

an initial attestation on system configuration. This process is thoroughly described in the CXL standard [62].
The second assumption is that the fabric of the distributed memory system supports broadcasts across the
interconnect. This assumption is important to implement the coherence of metadata between hosts. Such
broadcasts can be implemented as several private communications from one host to all other hosts or as a
request to a CXL switch and the switch sending some communication to other hosts in the system. This
work makes no assumptions about the security of these broadcasts, and implementing secure communication
across a shared disaggregated memory channel is an orthogonal problem to this work.

6.5.2 Cache Pooling

The next role of this section is to introduce the concept of a cache pool. A cache pool, depicted in Fig. 6.5,
describes an abstract view of host caches in disaggregated memory. Much like in a memory pool, the cache
pool abstraction allows caches associated with other devices in a disaggregated memory system to view the
rest of the architecture as an abstract object that can be queried. The cache pool allows host caches to
expand their effective capacity. Cache pools allow all host caches in the system to access the cache pool as
both the querying cache and a member of the expanded capacity. This approach, much like work stealing,
allows for better utilization of capacity elsewhere in the system when one device is under more strain.

To implement cache pooling, the cache controller of a pooled cache needs to update its miss and eviction
procedures. These updates are depicted in Fig. 6.6. On a miss, the cache controller performs two operations
in parallel. First, they access the next level in the hierarchy just as before. In the context of secure memory,
if the cache is the last level cache (LLC) for that data type (such as the metadata cache), this fetch to the
next level is pessimistic as values fetched from memory are untrusted and require further authentication.
In parallel, the cache controller optimistically queries the cache pool for the value. The controller sends a
broadcast message across the fabric of the disaggregated memory system requesting the address. Similar to
a snooping coherence protocol, on receiving such a broadcast request, the remote pooled caches are checked,
and if the address is found, a response with the requested value is securely and privately sent back to the
requesting cache. After sending the data back to the requesting cache, the remote pooled cache must evict
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the block to maintain coherence (described below). The broadcast can be made without maintaining the
state of the sent request and responses can be received asynchronously.

Evictions follow a similar procedure. When a value is evicted from a cache, it is written back to its
local memory. In parallel, the data is placed in a temporary buffer and offered to the cache pool for
another remote cache from the pool to accept. The broadcast asks remote hosts for their “availability.”
This work defines “availability” in Sec. 6.5.3. If an available host exists, the data is communicated to that
host and removed from the temporary buffer. This process is implemented differently depending on the
implementation of secure or insecure broadcast in the disaggregated memory system. In the presence of
secure broadcast, the sensitive metadata value can be included in the broadcast request, and the procedure
can occur asynchronously. Otherwise, the available remote host will send a private acknowledgment to the
broadcasting host before the data is securely transmitted.

Suppose the data associated with the evicted value belongs exclusively to one host (e.g., the metadata
associated with some remote address allocated to a single host). Coherence in this case is trivial in a cache
pool. Each host makes requests to the corresponding memory device in a memory pool and not to the cache
pool, thus updates to cached values can only be made to the local cache or to the memory device where that
data is mapped. That is, data in a remote cache in the pool will never be modified. Following a remote
cache hit, the data is evicted following its transmission to the requesting cache.

There are two possible schemes to implement coherence if the data cached in the cache pool is shared
among multiple hosts. One option is to use the disaggregated memory fabric as a channel to implement the
coherence mechanism. Several pieces of work have explored using CXL as a means to implement cross-host
coherence [35, 12, 253, 289, 240], but such a scheme comes at the cost of significant traffic on the memory
system fabric. Alternatively, the cache pool can mandate that shared data may only be loaded into a host’s
cache in a read-only state. Shared data in the cache pool is always assumed to belong to some other host.
In the context of metadata caches, the read-only state of metadata can still vastly benefit secure memory
performance as it reduces future authentication paths.

Much of the cache pool traffic can be dropped without consequence after some timeout. All requests
to the cache pool fall back on an equivalent request to the corresponding memory. When broadcasting an
eviction to the cache pool, the state can be dropped if no acknowledgment is received after a timeout. Doing
so merely means that the next request for the data needs to be from memory. Furthermore, space reserved to
receive the data following an acknowledgment can be freed after a timeout without impacting the protocol.

The cache pool benefits the performance of an individual device at the expense of traffic across the
interconnect. Note that this is an important issue, as cross-device coherence of data in disaggregated memory
protocols has been limited by the traffic across the interconnect and by the state maintained on the local
device. The cache pool similarly increases traffic across the interconnect, and Sec. 6.5.4 describes mechanisms
through which CAPULET explicitly addresses this trade-off.

6.5.3 CAPULET

CAPULET takes advantage of cache pooling for secure memory metadata caching, as depicted in Fig. 6.6.
Hits in remote caches in the cache pool can be trusted. This trust is established at startup, leveraging
attestation features of the devices involved and the Diffie-Hellman exchange protocol for establishing a
secure channel [171]. The attestation process can guarantee that the remote host is running trusted logic
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Figure 6.6: Overview of CAPULET with secure memory metadata and two hosts (orange implies cache on
a remote host).

as it was intended, so it can be assumed that the secure memory protocol is working correctly. From this
assumption it can also be derived that the metadata, while residing in the remote pooled cache, is not
subject to corruption, cannot be modified by the cache logic, and is only ever communicated securely across
the interconnect.

Even though remote cache hits have longer latency than the local hits, the performance benefits are
still notable. Hits in remote caches require longer latency, in some cases even comparable latency to main
memory accesses, since they need to traverse the PCIe fabric. Prior work notes that access latency to remote
devices may be over 100ns in some configurations [150]. However, remote cache hits in CAPULET still
benefit as these values are trusted and reduce the additional memory requests. Further authentication of
secure memory metadata against parent nodes is not required after performing an authentication against a
trusted value. Thus, remote cache hits provide a performance benefit in terms of reducing the amount of
metadata to authenticate as the bandwidth requirement on the device to access metadata is reduced.

CAPULET also allows for remote caches in a cache pool to define when they are “available” to accept
remote requests. Given that different hosts may be running different workloads, it is unlikely that both will
perform the same memory access pattern in parallel, and one may be more memory bound at some point in
time than the others. If some remote cache is under heavy strain, it is better to handle only local requests
from the active application primarily running on its address space with the metadata already in its cache.
This work defines a node as “available” if it has free space to store the offered metadata or if the metadata
from the evicted cache is used more recently by that cache than the eviction target in its own cache. This
definition is important, as accepting metadata from the pool may degrade the metadata cache performance
for local authentications.

6.5.4 Reducing Interconnect Traffic

Cache pools offer a performance benefit at the cost of increased interconnect traffic. CAPULET proposes
four mechanisms to reduce traffic across the interconnect. These mechanisms are important for disaggregated
memory systems that implement other protocols that are interconnect bandwidth intensive. When evicting
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Table 6.1: Simulator configuration for CAPULET evaluation.

On-Chip Configuration
Processor 4 cores, x86 ISA, out-of-order

1GHz clock, 1 thread/core
L1 cache 48kB icache, 32kB dcache

2-way set-associative LRU
2-cycle latency, 64B/block

L2 cache 512kB, 8-way set associative LRU
20-cycle latency, 64B/block

L3 cache 8MB, 64-way set associative LRU
32-cycle latency, 64B/block
Security Configuration

BMT 8-ary integrity nodes
64-ary counters

Metadata Cache 64kB, 2-cycle latency
Memory Node and Topology Configuration

Local RAM 64GB per node
Remote Topology 77ns up to 8 remote nodes (512kB of cache pool)

based on [150] 102ns up to 16 nodes (1MB of cache pool)
182ns 32 or more nodes (2+MB of cache pool)

a value from a host’s cache in the cache pool, CAPULET broadcasts over the disaggregated memory system
to search for an available memory node to store the value. However, doing so requires sending a broadcast,
acknowledgment, and data across the interconnect in systems without secure broadcast (systems with secure
broadcast only send the broadcast with the data).

The first approach to reduce interconnect traffic uses a probabilistic broadcast mechanism. Local caches
only broadcast evicted values with some probability Pe. Doing this reduces the likelihood of remote hits in
the cache pool, but also reduces the traffic sent to maintain that data in the pool.

The second approach to reduce interconnect traffic lets remote devices choose to ignore broadcasts of
evicted values across the interconnect to store metadata from some remote memory device with probability
Pie. This reduces the amount of acknowledgement and data transmission traffic across the interconnect in
systems without secure broadcast. Note, in order to ensure that coherence is preserved this means that a
host must send an invalidation broadcast when it dirties a block in its local cache, and remote caches cannot
ignore invalidation broadcasts.

A third approach to reduce traffic is to let the cache controller choose whether or not to send miss
requests to the cache pool with probability Pm. This means that the device will fallback on fetching the
metadata from untrusted, local memory even if the value is cached elsewhere in the pool. However, making
this decision the local cache reduces the traffic sent across the interconnect.

The fourth approach, much like how remote caches can choose to ignore broadcasts to store evicted
values, remote caches can also ignore broadcasts for missed values with probability Pim.

6.6 Evaluation
This section describes the evaluation methodology of CAPULET. CAPULET is implemented and evaluated
in two formats: 1⃝ an extension to gem5 [162], a timing accurate state-of-the-art simulation tool which
is used to measure the performance impact of CAPULET and 2⃝ a cache emulator coupled with a series
of memory traces from SPEC 2017 CPU benchmarks that are used to study the sensitivity of different
interleaving strategies on bandwidth and interconnect traffic. The configuration for the gem5-based study
can be found in Table 6.1. The memory traces from each of the SPEC CPU 2017 benchmark suite [40]
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through a gem5 [162] simulation. The benchmarks are simulated from a region of interest, as determined
by SimPoint [99], where all last-level cache (LLC) misses and writebacks are written to a file for one trillion
instructions. In total, this evaluation is based on over 800GB of memory trace data. The memory traces
are used to interleave various permutations of the traces based on the time of access from the beginning of
the region of interest. This approach allows us to emulate the “next” memory access to the memory system.
Each memory access is sent to the emulated memory system by determining to which remote memory the
access should be sent based on the address.

The goal of this section is to show the advantages of CAPULET when applied to two popular disag-
gregated memory system deployments: memory expansion for single hosts (i.e., local deployments) and for
multiple hosts (i.e., cloud deployments). Disaggregated shared memory faces practical deployment chal-
lenges [157, 124] and is therefore outside the scope of this study. The evaluation shows that CAPULET
improves performance relative to secure memory on a local device by as much as 4× and 15% on average
for HPC workloads. The experiments show a direct correlation between performance benefit of CAPULET
and the reduction in metadata accesses for authentication. This benefit is a function of improved metadata
cache utilization, which comes at the cost of interconnect traffic.

As described in Section 6.5, CAPULET may be configured with any secure memory implementation so
long as the memory system fabric supports the secure sharing of metadata. For ease of implementation, this
work implements the protocol described in [93] but the CAPULET technique can be applied to any secure
memory implementation that uses metadata caches.

6.6.1 Local Deployments

The assumed deployment of the single host experiment is one where a single host uses a disaggregated
memory system to expand the memory capacity beyond the allotted DIMM slots. This work also assumes
that there are several other hosts using the memory system to achieve a similar end, but that these hosts
are largely idle in their memory system usage. To evaluate CAPULET in this context, this work implements
CAPULET on top of local and remote metadata caches with a timing associated with local and remote cache
access. From here, this work evaluates the benefits of various disaggregated memory configurations under
the SPEChpc 2021 benchmarks [151]. The region of interests are selected based on the existing labeling in
each benchmark (following benchmark initialization). It is worth mentioning that this work uses the tiny
configuration of the SPEChpc workloads to meet the constraints of simulating such a workload, but larger
workloads will demonstrate more memory intensive behavior.

Fig. 6.7 shows the normalized cycles to execute the region of interest for the SPEChpc 2021 workloads
(lower is better). The “Control” configuration describes the implementation of the secure memory protocol
from [93] on a single local device. Other configurations are specified in the format lc − rc − rl where lc

describes the capacity of the metadata cache in the host of interest’s MEE, rc describes the capacity of
metadata caches in the “cache pool”, and rl describes the end-to-end latency to access caches in the cache
pool taking into account the disaggregated memory configuration from [150]. For the purposes of this study,
this work assumes a system with uniform latency to all devices.

The evaluation is run with the workloads for 1 billion instructions in these configurations from the
beginning of the region of interest, which is a standard approach for simulator-based evaluation [310, 294,
255]. The evaluation shows that CAPULET can benefit performance by up to 4× (521.miniswp_t) and by
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Figure 6.7: Normalized cycles executed across SPEChpc 2021 benchmark suite.

15-18% on average (gmean).
The performance benefits of CAPULET are attributed to the increased “effective” metadata cache ca-

pacity that comes from utilizing the space in under-utilized remote metadata caches. As a result, CAPULET
reduces the number of memory accesses. This evaluation demonstrates the impact of this effect in Fig. 6.8.
This figure shows the total number of memory accesses for metadata, normalized to the control. As shown,
the reduction of metadata accesses to the memory device is strongly correlated with the performance benefit.
For instance, the miniswp benchmark has approximately 2× fewer metadata memory accesses compared to
the control configuration when CAPULET is used in any of the configurations under study. Given that this
workload is particularly memory bound, the reduction in additional memory access frees device bandwidth
to fetch application data and advance the program state. Similarly, CAPULET reduces memory accesses for
metadata fetches by 25% in soma which accounts for its additional performance benefit. On the other hand,
the weather benchmark has a smaller reduction in metadata memory accesses (5% in some configurations)
and the corresponding performance benefits are equally small. The reason for this behavior is that this
application is mostly compute bound.

Generally, the trends from these workloads demonstrate that optimizations to secure memory are directly
related to memory footprint. Consistent with findings in [39], this evaluation finds that miniswp and soma
are the most memory-bound workloads. That is, they benefit the least from adding compute to the system.
Further, this analysis shows that the additional capacity of the metadata caches in the cache pool significantly
reduced the number of memory accesses due to metadata fetches for each of these workloads. Although the
evaluation was limited to using the “tiny” inputs by environment constraints, studying these workloads on
real hardware shows that the speedup due to extra compute scales even less with small, medium, and large
input sizes. Given this observation, it is natural to anticipate that the benefits of CAPULET extend to
larger workloads. This is important given the trend of increasing memory footprints in modern applications.

This evaluation emphasizes the benefits of CAPULET by running workloads with configurable size. This
done by using the graph500 [184] breadth-first search (BFS) workload and a random-access microbenchmark.
The graphs are configured to sizes of 512MB, 1GB, and 2GB (determined using mperf [214]), which take 220,
221, and 222 nodes as input with 16 edges per node in each, respectively. With this benchmark, the evaluation



89

505.lbm_t

513.soma_t

519.clv
leaf_t

521.miniswp_t

528.pot3d_t

534.hpgmgfv_t

535.weather_t
gmean

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
m

et
ad

at
a

control
64kB-64kB-77
64kB-128kB-77
64kB-256kB-77

64kB-512kB-77
64kB-1MB-102
64kB-2MB-182

Figure 6.8: Metadata accesses to the memory device. Values are normalized to the number of accesses in
the control.

measures iterations 8-12 as a representative region of interest and turn off validation. This methodology
is consistent with prior work [246]. The microbenchmark measures 1 billion random accesses following the
initialization of 2GB and 4GB arrays.

Figure 6.9 shows cycles executed normalized to the control implementation for each of the size-adjusted
workloads. Workloads specified with the “bfs” prefix describe graph500 workloads whereas the “mb” prefix
refer to the microbenchmark. The aim of this evaluation is to show that improved metadata cache capacity
benefits performance as workloads become more memory intensive (due to their larger memory footprint).
This phenomenon is evidenced by the fact that performance improves for bigger memory workloads. CA-
PULET benefits BFS in a 2GB graph by 18% whereas it only benefits a 512MB graph by 6%. This trend is
consistent for the microbenchmark workload as well.

Larger workloads benefit most from CAPULET. Due to simulation environment limitations, it is difficult
to simulate the size of the workload required to show the full potential of CAPULET. For example, the small
workloads in SPEChpc requires 480GB of memory [151]. Even in full system simulation, the lack of noise
in a simulated environment due to application interference with the operating system implies that similar
applications on real hardware would be more intensive on the underlying memory system. These challenges
further motivate the need for improved metadata cache utilization, which CAPULET addresses.

6.6.2 Cloud Deployments

Beyond local memory expansion, memory pooling is the anticipated deployment of disaggregated memory
in the cloud. As depicted in Fig. 6.1, multiple hosts may share remote memory devices in the disaggregated
memory system to form a memory pool. The protocol is implemented in the operating system and/or
interconnect fabric [150, 138, 61, 92]. The implementation assumes application data is distributed across
devices at data word granularity by the interconnect fabric to expose the peak bandwidth of the memory
system.

As discussed in Section 6.6.1, there is a strong correlation between metadata accesses to memory and
performance. To study the impact of this effect in the cloud, the evaluation is performed with mixed memory
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Figure 6.9: Normalized cycles executed for various BFS and microbenchmark workloads.

traces of each of the SPEC 2017 CPU benchmarks with one another to compare their regions of interest. This
is modeled with all accesses to the L3 cache in the custom emulation model, as well as the protection of all
subsequent memory accesses (i.e., misses, writebacks, etc) with the appropriate secure memory protection.
The cache emulator is configured with an L3 cache on each host (two hosts), a secure memory metadata
cache and a local memory device per host. The emulator is tooled to be able to control interconnect traffic
as described in Section 6.5.4. These experiments are performed by toggling the hyperparameters Pe, Pie,
Pm, and Pim.

Fig. 6.10 shows the impact of applying CAPULET to a shared memory pool in terms of metadata cache
utilization and interconnect traffic. The leftmost column describes the most aggressive version of CAPULET
in terms of message passing. That is, Pe, Pie, Pm, and Pim are all set to 100%. The middle column reduces
Pe to 20%, and the rightmost column reduces Pm to 20%. Experimentally, the cache evicting some metadata
or searching for some missed metadata is the primary source of network traffic, so toggling Pie and Pim had
a negligible impact on hit rates or traffic. Hit rates (top row) are described as the number of remote hits
over the number of local misses; interconnect traffic is described in terms of average messages per metadata
cache miss.

Local metadata cache misses can hit elsewhere in the cache pool up to 50% of the time. Along the
diagonal (i.e., where the same workload is run on both hosts), the hit rates tend to be lower as both caches
in the memory pool will be under similar degrees of strain at the same time. Perhaps counter intuitively, in
some cases remote hit rates tend to improve when reducing the probability that some evicted value will be
placed in a remote cache. This is attributed to the fact that evicted values are likely to exhibit poor locality,
except when the cache experiences significant strain. In these periods it is more likely that values are to be
evicted and that they will be found in remote caches. Reducing Pm to 20% significantly reduces the efficacy
of CAPULET. There is little to no performance benefit or penalty to interconnect bandwidth incurred by
storing values remotely if local misses merely search local memory by default.
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Figure 6.10: Multiprogram configurations where each host runs one memory intensive SPEC CPU 2017
benchmark. Heat maps in the top row show remote hit rates to remote metadata caches (remote hits /
local misses). Heat maps in the bottom row plot the number of additional packets on the interconnect per
metadata cache miss.

6.7 Conclusion
This chapter presents CAPULET, a cache pooling protocol that distributes the load of metadata caches
throughout a disaggregated memory system. The cache pool abstraction is powerful; caches can essentially
extend their capacity by taking advantage of other devices in the system without adding hardware to the
system. Such a primitive is important given that the metadata caches can easily be constrained when tasked
with caching remote metadata. The properties of disaggregated memories will continue to present new
opportunities and challenges for secure memory systems.

There are certain challenges that CAPULET does not address concerning a secure disaggregated memory
system. 1⃝ The protocol requires that the root of an integrity tree be stored on the host processor, which has
no knowledge of the management of the underlying disaggregated memory system. As a result, it is difficult
to apply CAPULET to a dynamically sized address space. To do so would require updating the root with
the new size, but the root is only securely initialized at the outset of the session. 2⃝ Implementing a cache
pool requires sending additional traffic across the memory system interconnect under the assumption that
sufficient bandwidth exists. If such bandwidth does not exist, the practicality of this primitive is limited.



Chapter 7

Conclusion

This dissertation set out to achieve the goal of improving secure memory to make it more practical for
commodity deployment. The works proposed in this dissertation make improvements on the prior literature
towards the ends of runtime overhead, spatial overhead, and considers the impact of emerging memory
technologies for secure memory.

A challenge of secure memory research is that it is difficult to judge how much a protocol needs to improve
the prior literature to be considered “good enough” to become practical. In other words, at what point is
there nothing more to say about secure memory? Ultimately, this is a function of two independent problems:
1⃝ any security protocol will always incur overhead over an insecure alternative, and 2⃝ there is no definition
for how slow is “too slow.”

Chapter 1 of this dissertation formalizes feature 1⃝ in the context of secure memory. The claim made is
that secure memory is important because processors make certain implicit assumptions about their memory.
The fact that this assumption is implicit gives rise to dangerous execution if it is not held in practice.
Therefore, the secure memory protocol explicitly implements guarantees around the assumption. However,
implementing any guarantee explicitly requires additional work on the critical path of a memory operation.
The question of “how much work” must be performed or is reasonable to perform is a function of the
robustness of the explicit guarantees. This dissertation makes the argument for one set of guarantees in
Chapter 2 given the set of vulnerabilities and attacks that have been demonstrated. Within this context,
this dissertation argues that “how much work must be performed” given a set of guarantees to uphold can be
reduced by improving the efficiency of the procedure to perform that work. In particular, a general insight
that is leveraged in each of the proposed protocols is that the design of the baseline secure memory protocol
does not take usage of a memory into account. By doing so, a more efficient protocol can reduce the overhead
of the protocol required to enforce the guarantees.

A notable limitation of this dissertation is its focus on a single threat model. The challenge of exploring
the extent to which this threat model appropriately characterizes the state of the world is an orthogonal
problem to the work in this dissertation. Furthermore, the threat model essentially mandates the use of an
integrity tree, and Chapter 2 shows that this is the primary performance overhead of secure memory.

Problem 2⃝ is much more difficult to quantify, and it is an artifact of any research topic in which
performance is a primary concern. In the context of secure memory, the claim that “secure memory is
too slow” is strong given that its guarantees have been relaxed in commodity products. If it were fast
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enough, there would be no need to relax these guarantees. However, it is far more difficult to make a strong
justification that some new proposal is “fast enough.” A strong argument for the overhead of a new system
or protocol can be made if the approach were implemented and widely deployed. The feedback of end-users
would justify if the ends justify the means.

This dissertation makes the claim that the proposed approach in Chapter 3, Chapter 5, and Chapter 6
are “faster than the alternatives” proposed in prior literature. A clear limitation of this dissertation, and
any other proposed architectures without commodity deployment, is that this is all that it can claim.

In conclusion, this dissertation satisfies its original goal to make secure memory more practical for com-
modity deployment. However, this thesis cannot and does not speak to the adjacent question of “at what
point will the meaningful things to say about secure memory be exhausted?” nor “how close is the current
literature to closing the problem of secure memory?” It is clear that the problem of safely using an untrusted
memory is important. It is also clear that prior proposals have been deemed insufficient for commodity de-
ployment. Therefore, it is reasonable to conclude that there is more work to be done towards achieving
efficient solutions towards this end. With the problems identified and characterized, this dissertation con-
tributes several proposed extensions to the secure memory protocol and an environment for future work
towards achieving a secure memory for commodity deployment.



Appendix A

Secure Memory Simulation Details

The appendix details the design decisions and implementation details of the secure memory implementation
in gem5 [162]. The repository is publicly accessible and usable as part of this dissertation1.

A.1 Design Overview
The simulated secure memory conforms to the gem5’s simulation model. The model naturally enables a
configuration of various components as well as the ability to add components, such as a secure memory
interface. To understand the design methodology of the secure memory simulation, this section first briefly
describes the simulation methodology used in gem5.

A.1.1 Nomenclature and gem5 Overview

gem5 [32, 162] is a “timing-accurate” architecture simulator. At a high level, the simulator runs a program
as the sequence of hardware events triggered by its execution. Each “event” is represented as a C++ lambda
function placed in a priority queue (i.e., the event queue) with an associated clock cycle (i.e., a timestamp)
at which it should execute. As a result, hardware’s behavior is represented by the execution of these lambda
functions, where the execution of a hardware event is likely to create another hardware event. Events are
associated with hardware components, each of which is simulated in the gem5 source.

In order to concretize this model, consider the abstract notion of executing an instruction from a pro-
gram using gem5’s single-stage pipeline processor. To execute the instruction, the processor must fetch the
instruction from its memory. The gem5 processor, which maintains the program counter (PC), will begin
its execution by placing an event for this fetch in the event queue. This will create a request to instruction
memory (i.e., the instruction cache, or icache) for the data at the address specified at the PC. The access
request and the access itself are not instantaneous, as the request must be received and processed by the
icache controller. As a result, the communication between the ports connecting the processor to the icache
controller may be implemented as a new event or have its timing “accounted” for in some later event (i.e.,
the tag comparison, access, or response by the cache). That is, part of the lambda function’s implementation

1www.github.com/samueltphd/SecureMemory
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Listing A.1: Sample gem5 configuration.

1 import m5
2 from m5.objects import *
3
4 # declare objects
5 system = System()
6 system.cpu = X86AtomicSimpleCPU()
7 system.xbar = SystemXBar()
8 system.memory = SimpleMemory()
9
10 # attach ports
11 system.cpu.icache_port = system.membus.cpu_side_ports
12 system.cpu.dcache_port = system.membus.cpu_side_ports
13 system.membus.mem_side_ports = system.memory.port
14
15 # set the workload and run...

will entail a communication to another component in which another lambda will be scheduled for some future
cycle.

It is worth noting that, within this example, there are several features that highlight the contribution
of gem5’s abstraction model. 1⃝ gem5 merely demands that events are scheduled, but does not dictate
the precision at which those events must be described. For instance, most of gem5’s “SimpleMemory”
schedules events at the granularity of hundreds of cycles (i.e., just the access) whereas DRAMSim [152]
based components model finer details such as row refresh. 2⃝ The interface of requests and ports naturally
allow various components to communicate with one another regardless of the hardware configuration. Ports
are classified as generally “requesting” and “receiving” which means that they are component agnostic. In
addition, requests are communicated between components via ports in a packet. 3⃝ The request not the
packet serves as the fundamental communication primitive. The processor may issue a request for 8 bytes
from memory (e.g., executing the instruction ld r0, 0(addr)) which triggers the data cache requesting the
full 64 byte cache line from memory. Each of these “events” are associated with the same request but may
require different packets to serve the goal of each component.

Given this, gem5 users specify a binary in which the definitions of the possible SimObject components are
defined and a configuration file. The configuration is a Python file that declares the SimObjects to use and
how they are connected. An example configuration is shown in Listing A.1. The declaration of the System,
X86AtomicSimpleCPU, SystemXBar, and SimpleMemory refer to objects defined in the simulator source. The
interface to attach ports between components is to set one port equal to the other.

More recent version of gem5 explicitly organize components to be called in the configuration front-end.
Much like real hardware, these versions leverage a Board objects that manages the interaction of processor,
cache, and memory components. As demonstrated in Listing A.2, this approach is remains modular enough
for a user to specify their desired components. The “memory” component includes the declaration of the
memory controller SimObject and the memory interface itself (i.e., DDRx, the number of memory channels,
etc). Seeing as the work in this dissertation concerns secure memory, which describes an extension of the
memory controller logic, implementing a secure memory component in gem5 is exposed to the front-end
through a component with the secure memory logic attached to the memory controller.
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Listing A.2: Sample gem5 configuration using the Board object.

1 import m5
2 from gem5.isa import ISA
3 from gem5.components.boards.x86_board import X86Board
4 from gem5.components.processors.simple_processor import SimpleProcessor
5 from gem5.components.memory import DualChannel
6 from gem5.components.cachehierarchies.ruby.mesi_two_level_cache_hierarchy import

MESITwoLevelCacheHierarchy
7
8 # declare objects
9 board = X86Board(
10 processor=SimpleProcessor(isa=ISA.X86, num_cores=2),
11 memory=DualChannelDDR4_2400(size="3GiB"),
12 cache_hierarchy=MESITwoLevelCacheHierarchy(l1d_size="32KiB", l1i_size="32KiB", l2_size="256

KiB"),
13 )
14
15 # set the workload and run...

A.1.2 Secure Memory Component

This thesis implements secure memory as a component that a gem5 Board can incorporate and interact
with. In particular, the component intercepts traffic from the Board’s last level cache (LLC) before it is
sent to memory. The component instantiates the associated secure memory SimObject, which is defined in
the simulator source. To perform the analysis for this dissertation, the back-end source defines four possible
architectures to implement secure memory: 1⃝ a direct-encrypted memory (no integrity), 2⃝ a counter-mode
encrypted memory (no integrity), 3⃝ an encrypted memory (counter-mode) with HMAC authentication, and
4⃝ an encrypted memory (counter-mode) with an integrity tree. Within these configurations, there are a
multitude of options to further test various design decisions, which we describe below.

The secure memory component models the timing of the various configurations. This is conveyed in
Fig. A.1. In the direct-encryption engine (configuration 1⃝), this includes a “cipher engine” that takes
data as input. The input buffer to this engine is served with the plain-text data from write requests and
cipher-text data from read requests that have responded from memory. Configurations 2⃝, 3⃝, and 4⃝ all
rely on encryption counters as input to the cipher engine to produce a one-time pad (OTP), which is then
XOR’ed with the plain-text or cipher-text data for encryption. As a result, the counter must be fetched
prior to utilizing the engine (the metadata access is described below). The latency for the cipher engine is
configurable, and the engine is assumed to be pipelined (i.e., one request can be processed per cycle). For
simplicity, the implementation does not model the actual encryption/decryption of data. Instead, it models
the timing that it would take to perform the cipher.

Configurations 3⃝ and 4⃝ rely on a hashing engine so that MACs can authenticate data. To perform
the authentication, the untrusted data has its MAC computed (i.e., a hash computation in an HMAC).
Therefore, fetched cipher-text data and encryption counter serve as input to the hashing engine to perform
an authentication. The latency to perform hashes is configurable, but generally the cipher latency should be
longer than the hashing latency. Much like the cipher engine, the implementation only models the timing of
the authentication and does not model the actual hashing of data.

Configurations 2⃝, 3⃝, and 4⃝ all rely on metadata. Fig. A.1 shows how metadata may be accessed.
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Figure A.1: Model of Secure Memory SimObject compo-
nents.

The secure memory component initiates all
traffic to the metadata cache and intercepts all
traffic from the metadata cache sent to mem-
ory. This allows the secure memory implemen-
tation to reason about metadata cache hits and
misses relative to the larger protocol, which is
important to establish roots of trust in config-
uration 4⃝. To access this metadata in mem-
ory without interfering with application data,
the memory controller needs to be modified to
accept requests outside of the normal address
range. Seeing as this secure memory imple-
mentation models its timing, the actual stor-
age of each metadata value is unnecessary. In-
stead, the memory controller is extended to
keep a single block where requests for any metadata address are directed.

A.2 Implementation
Beyond the high level description of the components, there are several non-trivial implementation details to
optimize the secure memory protocol. These are seldom discussed in the literature, so this section formalizes
them.

A.2.1 Parallel Writes and Reads

Consider an outstanding write and read request for the same data or address. Seeing as both require some
additional latency on the critical path of the operation for encryption/decryption (regardless of the secure
memory configuration), the write request maintains the plain-text data will reside on-chip in a trusted state
(it hasn’t been sent to memory yet). Therefore, the read request can receive its state from the pending write
rather than receiving the data from memory. In doing so, the read does not require a memory access nor
the cipher.

When handling a read request, the secure memory component will check for a parallel write at two
points: before the memory fetch and after the memory response. To do so, it checks the input buffer to the
cipher engine for parallel writes. Seeing as the memory authentication may require significant additional
latency on the critical path of the read, write requests also check the active read requests that are awaiting
authentication. If a corresponding request exists, the authentication can be bypassed as the data fetched
from memory is stale relative to the application state. Note, this may slightly modify the memory consistency
model of the memory system, but the modification will only decrease how relaxed the consistency model will
appear. Otherwise, this protocol is required in order to implement strict consistency in a secure memory.
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A.2.2 Concurrent Authentications

To implement concurrent authentications that share some metadata, the secure memory component needs to
have some means for requests to track their associated children. Given the presence of the metadata cache,
the authentication data may return before or after its children. As such, the secure memory component
maintains a buffer for children awaiting an authenticating parent as well as for parents awaiting requested
children to respond.

In either case, there may be multiple parallel requests or a incoming future request may arrive that shares
an existing parent value. For this reason, the first step to authenticate some request is to announce that
it is now awaiting authentication. Any request for some authenticating metadata is first searched for in
the pending structures (either requests or responses) before a new request is made. If the parent metadata
has already been requested, then it will authenticate this child whenever it is found. The structures to
track parent requests must maintain a counter to ensure that all children depending on the metadata for
authentication are served before the value is discarded. Note, a node may be both a parent node and a child
node if the metadata is untrusted, and a node serves the role of child before it acts as a parent.

A.2.3 Concurrent Updates

In this implementation, the secure memory component heavily relies on the metadata cache to coordinate
parallel updates to the metadata state. Practically, the component will pessimistically send all update
requests to the security metadata to the metadata cache. Seeing as the cache acts as a write allocate cache
(i.e., misses are fetched to fill the associated cache block before the block is written), parallel writes for the
same block will be concurrently handled by the cache. That is, the cache will allocate an MSHR register
for each of the writes and these writes will all be serviced in the order that they arrive when the block
responds from memory. Theoretically, if n writes of the same block (i.e., tree node) occur in parallel, only
write n− 1 needs to be performed to appropriately update the tree node. To alleviate some of this pressure,
the secure memory component could implement logic in the port to detect these parallel writes and reduce
the metadata cache traffic, but for simplicity this implementation offloads that task to the cache.

A.2.4 Responding to the Processor

Seeing as decryption and authentication are asynchronous operations whose latency are dependent on cache
behaviors, the secure memory component needs to track when each of these procedures have completed for
a particular request. As such, the implementation maintains two buffers for authenticated and decrypted
read requests from memory. In addition, the component maintains a lightweight engine that sends responses
with the data back to the processor once it appears in both buffers.

A.3 Tutorial
Using the secure memory component is designed to be equivalent to using the gem5 simulator with a its
associated memory component. As such, the “user guide” for secure memory with gem5 is consistent with
the rest of the simulator. This is well documented2. To use a secure memory component, a user can import

2https://www.gem5.org/documentation and https://www.gem5.org/documentation/learning_gem5/introduction.
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Listing A.3: Sample gem5 configuration using the Board object and a secure memory component.

1 import m5
2 from gem5.isa import ISA
3 from gem5.components.boards.x86_board import X86Board
4 from gem5.components.processors.simple_processor import SimpleProcessor
5 from gem5.components.memory.secure import (
6 DirectEncryptedMemory ,
7 CounterModeEncryptedMemory ,
8 MacAuthenticatedMemory ,
9 IntegrityTreeAuthenticatedMemory ,
10 )
11 from gem5.components.cachehierarchies.ruby.mesi_two_level_cache_hierarchy import

MESITwoLevelCacheHierarchy
12
13 # declare objects
14 board = X86Board(
15 processor=SimpleProcessor(isa=ISA.X86, num_cores=2),
16 memory=SecureMemory(size="3GiB"),
17 cache_hierarchy=MESITwoLevelCacheHierarchy(l1d_size="32KiB", l1i_size="32KiB", l2_size="256

KiB"),
18 )
19
20 # set the workload and run...

one of the components implemented in this work into their front-end configuration. An example of this is in
the Listing A.3.

Note, the provided implementation includes several possible memory controller extensions for vari-
ous secure memory implementations. These are DirectEncryptedMemory, CounterModeEncryptedMemory,
MacAuthenticatedMemory, IntegrityTreeAuthenticatedMemory, and each configures and implements an
associated SimObject in the simulator back-end. Within each of these configurations, there are several po-
tential options that can be passed to the constructor. These are enumerated in the help flags, and describe
various potential configurations of the design decisions in the secure memory implementation.

This section also describes the methodology to extend the infrastructure and provides some insight into
common errors that may arise.

A.3.1 Extending the Secure Memory Component

It is impossible to foresee all of the possible proposed modifications to the secure memory component.
Therefore, the implementation details of the works described in this dissertation serve as case studies for
these changes.

Cordelia In order to implement Cordelia, the integrity tree structure must be modified to become pointer-
chasing. To account for this, the memory controller and abstract memory interface SimObjects need to be
modified to allocate the memory for the integrity tree and initialize the pointers for a balanced tree on
simulator boot. This can be achieved by overriding the objects startup function. In addition, requests for
this metadata must be appropriately pointed towards these addresses in the memory controller.

After modifying the memory controller and abstract memory interfaces to make the space for the integrity
tree metadata, the secure memory component needs to be modified such that parent addresses are no longer
computed based on the child address. Instead, they require the response from the memory fetch and the
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metadata state is read to know the parent value. Seeing as the secure memory component controls traffic
to and from the metadata cache, this read does not need to happen before the response from the metadata
cache, but it cannot be as eager as a computation on the current address. This organization also allows the
secure memory component to write to metadata, which restructures the tree shape. Cordelia leverages this
to restructure the tree shape according to a Huffman tree update scheme.

Baobab Merkle Tree It is necessary to maintain the true state of the integrity tree leaves in order
to implement the Baobab Merkle Tree. To maintain leaves, space needs to be allocated in the memory
components in the same way as the integrity tree nodes in Cordelia. Space needs to be allocated in the
secure memory component to maintain the memoization table. Much like updating pointers in Cordelia, the
indices in the leaves are updated by writing to their state.

A Midsummer Night’s Tree To implement the AMNT architecture, it is necessary to ensure that the
secure memory component implements a crash consistent metadata update scheme. This entails setting the
WRITE_THROUGH flag associated with the packet to ensure that the changes are propagated downstream from
the cache for the appropriate packets. When implementing leaf persistence, this is only done for packets at
the encryption counter level. For strict persistence, this entails all packets.

AMNT implements leaf persistence in a fast subtree. This is implemented by tracking an additional
address field in the secure memory component associated with an integrity tree node. From here, a check
is performed prior to creating a sequence of writes to determine if the current update path occurs inside
or outside of the subtree and uses the correct crash consistency protocol accordingly. In addition, the
authentication procedure is updated such that reaching the subtree root is trusted in the same way as the
true root or a metadata cache hit.

CAPULET CAPULET does not modify anything about the secure memory protocol in and of itself.
Instead, seeing as CXL is not implemented in gem5, the implementation includes multiple memory controllers
and misses are used to coordinate among one another. The biggest implementation detail is to model the
latency of a remote cache communication, which is implemented as a scheduled event in which the components
check each other’s state to handle the request.

A.3.2 Common Errors

Port Communication The recvTimingReq and recvTimingResp functions associated with a port return
a boolean value. Without loss of generality, consider an incoming request. If the SimObject cannot handle
the incoming request, then the recvTimingReq function will return false. If it does so, then the port on the
other side of the connection will maintain the packet and await some later notification that the SimObject has
the capacity to now handle that request. It does so by calling the sendRetryReq function. The interaction
between ports is not unique to the secure memory component, but these errors are common as the secure
memory component is responsible for managing ports to several entities.

Using the Metadata Cache Whenever a request is made to a cache component, the implementation of
a cache SimObject expects a response. That is, if the metadata_response_port receives a request from
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the metadata cache (i.e., a miss, coherence request, etc), then the cache block is blocked until a response is
returned. As such, it is important that all requests have an equivalent response.

Tracking Packets versus Requests It is worth distinguishing the roles of a Packet versus a Request in
gem5. Packets carry requests between various SimObjects, but if SimObject A communicates Packet p with
Request r to SimObject B, then it is not a guarantee that p will be used if B later sends r to SimObject
C. As such, if a component wants to track the behavior of an outstanding request, it is important to
track the Request object in the event that the packet is freed, especially if its state will be later examined.
Alternatively, the addresses can be tracked to avoid a reference to the Request object in a structure in the
object.

Deadlock If the Board class implements a ruby based cache hierarchy, an external monitor tracks the
state of active requests. If they are not processed in a reasonable amount of time, then the monitor will
throw a “deadlock” error. These errors occur when the processor state is expecting a response from the
memory system for some request that it has not received. When such an error occurs, it is worth examining
the state of the secure memory component to determine which requests are currently pending and the state
of the metadata.

Dynamic Memory When creating a packet, the memory for data is not allocated by default. If an error
is thrown when attempting to copy data from memory to a metadata request (read) or vice versa (write),
then it is worth verifying that the space for that data was allocated (i.e., calling pkt->allocate()). By the
same token, it is important to free the packet pointer whenever the secure memory component no longer
requires its state.



Appendix B

Compression Proposal

B.1 Motivation
To implement secure memory, the memory controller must maintain some amount of metadata in memory
alongside the data to authenticate its state. As described in Chapter 4, the storage requirement of this
metadata is a significant proportion of the capacity. While Chapter 4 proposes a scheme in which the spatial
overhead of the BMT can be reduced by memoizing encryption counters, it faces several limitations.

Limitation 1. For one, the memoization table requires significant on-chip area overhead for its component.
On-chip space is limited, and reserving a 256kB table in addition to the metadata cache exceeds the capacity
allocated to the memory controller in SGX [103].
Goal: Do not require further on-chip area to reduce storage overhead.

Limitation 2. In addition, the proposal from Chapter 4 describes storing additional metadata in memory
(i.e., the reverse mapping table) to reduce the storage overhead of other metadata. The notion of adding
in-memory storage to reduce the global memory storage overhead is unsatisfactory; it limits the applicability
further advances of the alternative baseline.
Goal: Do not require additional metadata fields to be stored in memory alongside the data and secure
memory metadata.

Limitation 3. The proposal from Chapter 4 reduces the spatial overhead of the encryption counters and
the integrity tree. However, as highlighted in Sec. 4.2, these components make up a small percentage of the
overall storage overhead of secure memory metadata.
Goal: Reduce the storage overhead of all fields, including the MACs.

As such, this dissertation proposes a co-designed secure and compressed memory architecture. In such
a proposal, data is compressed so that the “effective” capacity of the memory device is increased. In fact,
prior work has shown that memory compression can improve the effective size of the device by 2 − 4× in
practice [17, 16]. Then, the secure memory metadata can protect the raw bytes stored in the device itself
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rather than the compressed data. As such, the storage overhead of secure memory metadata is reduced by
the ratio at which the data can be compressed. There are a few insights of such a proposal:

1. The storage overhead of the secure memory metadata becomes a function of the efficacy of the com-
pressed memory system. As a result, the security metadata can take the same form as in a decompressed
scheme, and the security primitives are upheld (e.g., hashes are equally unlikely to collide, etc).

2. The cost of compression can be hidden behind the cost of maintaining the secure memory metadata.
Thus, the property of compression comes for “free.”

3. This proposal argues in favor of co-designing security features with other desirable features of a system
or architecture. Much of the literature in developing efficient security protocols harp on performance.
Alternatively, this proposal takes the approach that secure systems/architectures may be more palat-
able with additional features.

B.2 Challenges and Related Work
There are several challenges to implement the proposed co-designed secure-compressed memory architec-
ture. This section describes some of the key challenges around implementing such a scheme. In addition,
this section overviews some of the prior literature on compressed memory, which speaks to some of these
challenges.

B.2.1 Challenges

Challenge 1. There is a wide breadth of compression algorithms [180] that can potentially be used.
Each has its own properties with respect to latency, complexity, size stability of compressed data, etc. For
instance, Lempel-Ziv (LZ or LZ77) [308] compression provides high compressibility of data, but is considered
a slow operation with relatively limited opportunity for parallelization. Other algorithms, such zero-content
detection, are much faster but whose compressibility is more heavily dependent on the prevalence of patterns
in the data.

Challenge 2. Once the data is compressed, it is non-trivial to know where the data is stored. Suppose the
compressed data is stored at the physical address specified by the processor. In such a case, the compressed
data uses a small percentage of the word in memory, and the unused bytes in the word are unreachable.
That is, this scheme suffers from internal fragmentation. Thus, some other scheme to manage a compressed
memory must be used.

Challenge 3. The capacity of a compressed memory becomes a function of the data contents. At the same
time, the operating system (OS) and other software systems rely on knowing the memory size a priori to
maintain and processes. For example, a process that uses a greater memory size than the device capacity
may be killed by the OS if the contents of its memory change, even if the process does not allocate more
memory. As a result, the OS must be aware of the compressed memory scheme.
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B.2.2 Related Work

The notion of a compressed memory has been discussed for several decades [143, 98]. Mittal and Vetter [180]
identify data compressibility, compression granularity, choice of compression algorithm, latency and energy
overhead, and implementation complexity as the key issues in a compressed memory. In the context of this
proposal, the granularity of data is the data word and/or cache line size (i.e., 64-bytes). In addition, the
choice of compression algorithm is unrestricted insofar as the latency can be hidden by the AES latency (i.e.,
53 cycles).

Regarding Challenge 1, IBM’s memory expansion technology (MXT) [258] indicates that compression
latency can successfully be hidden behind the encryption latency. MXT leverages LZ77 compression algo-
rithm as an ASIC, and claims that 16 bytes can be compressed per cycle. This indicates that even data
words of 512 bytes can be compressed in less latency than the latency to produce the OTP. As such, the
compression algorithm may be aggressive, but algorithms that are difficult to implement on an ASIC (i.e.,
Huffman encoding [182] relies on additional metadata to access) should not be considered.

To account for Challenge 2, the MXT architecture proposes using an on-chip memory-resident table to
perform “address indirection.” This approach distinguishes the notion of data’s physical address from the
processor’s physical address (i.e., the logical physical address, or LPA). When accessing some location in
memory, the memory controller translates the requested logical physical address to the true physical address
to be accessed in the device. This allows the memory controller to remap data as its compressibility changes
whenever the data is to be stored. Alternatively, Ekman and Stenstrom [72] propose a scheme in which
translation can reside in an in-memory structure much like the TLB. Alternative approaches aim to keep
compression cost low by keeping a compressed and uncompressed region that dynamically detect the working
sets of memory [139, 190]. This would not be an issue in this proposed work, as the compression latency is
not a limiting feature.

Challenge 3 is largely out of scope of the proposed solution. Practical systems use interfaces such as
zswap [123] or allowing software to manage logical partitions that are mapped onto the physical memory
space [105]. The task is also similar to how an OS maintains a remote address space in a far memory
system [139].

To summarize, the prior work on compressed memory indicates that an aggressive compression algorithm
may be used, as even the latency to compress data using LZ77 can be hidden behind the latency to produce a
OTP. Furthermore, the memory controller will need to maintain some mapping of logical physical addresses
of the decompressed data to the physical addresses of the compressed data in the memory device. The task
of implementing software to use the architecture is beyond the scope of the proposed architecture, but the
area of designing systems to leverage these architectures is well studied.

B.3 Design

B.3.1 Pipeline

The compression methodology for a compressed memory is non-trivial, especially in the context of a secure
memory. In particular, there are implications if the data is compressed before or after it is encrypted. If data
is encrypted before it is compressed, then it is unlikely that the encrypted data will have enough patterns
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to be compressible. On the other hand, if data is encrypted after it is compressed, then a smaller portion of
the one-time pad (OTP) used for encryption will be utilized in the cipher.

This proposed design considers using the pipeline depicted in Fig. B.1. In order to know which metadata

Figure B.1: Pipeline of stages to compress a secure memory.

to use, the compression must happen before
encryption and metadata updates. In the
pipeline, the first stage is to compress the data.
Seeing as the new data contents may impact
the data’s compressibility, the data may need
to be remapped as the new compressed data
may no longer fit in its prior physical address.
The next stage of the pipeline is to remap the
compressed data. The mapping procedure is
detailed in Sec. B.3.2, and the production of a
new physical address will indicate which metadata is associated with the data. As such, the final stage of
the pipeline refers to the maintenance of the metadata fields. This includes producing the OTP, encrypting
the compressed data, producing the MAC, and updating the integrity tree.

There are a few things to note about the proposed pipeline. For one, the compression stage does not
make any assumptions about the compression algorithm used. Seeing as all data writes must go through
this stage, it may be desirable to use a pipelined, low-latency engine. It is important that the engine uses a
safe, sharable compression algorithm to be resilient to data leakage via BREACH, DROWN, CRIME, and
BEAST attacks [119]. In these attacks, an adversary sends payloads to memory whose compressibility is
known. The produced MACs leak information about the other victim data stored in the shared word.

Figure B.2: Data structures required to perform map-
ping of logical physical addresses to physical addresses
in the memory device. Includes a look-up table for ac-
tively mapped addresses and a free list for unmapped
addresses.

Furthermore, the remapping of newly com-
pressed data will require re-encrypting and recom-
puting the MAC of the word in which the data is
to be stored. This means that data writes in the
secure-compressed memory also entails fetching the
word at which this data is mapped.

B.3.2 Mapping Logical Physical Ad-
dresses

The proposed architecture must map logical physi-
cal addresses (LPAs) to physical addresses (PAs) in
the memory device. The structures to implement
this are depicted in Fig. B.2. This is achieved us-
ing a look-up table (which can reside in memory)
that maintains the LPA, the PA, and the size of the
compressed data. In addition, the architecture must
maintain a set “free list” of unmapped addresses of
various sized “chunks.” For simplicity, the candidate
chunk sizes are 16 bytes, 32 bytes, and 64 bytes.
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Data that can be compressed to 16 bytes or less can be mapped to the 16 byte chunks, data that can be
compressed to 32 bytes or less (but more than 16 bytes) are mapped to a 32 byte chunk. Data that cannot
be compressed to 32 bytes or less is kept decompressed and mapped to a 64 byte chunk. Whenever data
is remapped, the PA in the prior entry of the look-up table is added to the “free list” with the associated
size. The “free list” may be maintained much like the buddy allocation system to ensure that an appropriate
sized chunk always exists. This problem is explored in detail in MXT [258].
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